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S1 Fig. Enhanced entity-relationship (EER) diagram of the MySQL-based PhaLP database. Each table is represented

by a box containing a list of its respective column names and their corresponding data type, with the maximum length

between brackets. Columns that are (part of) the primary key of a table are indicated with a key symbol in front of the

column name. Foreign keys used to link to another table have no symbol. Other columns are indicated with blue

diamonds (filled if the column is obligatory, empty if optional). Relationships between tables are indicated with a crow’s

foot notation. A relationship is indicated by a line with a double perpendicular line at the side of a ‘one’ table and a

crow’s foot at the side of a ‘many’ table. The ‘one-to-many’ relationship between ‘phages’ and “UniProt” for example

can be interpreted as: one phage can be linked to many UniProt entries, but each UniProt entry can only be linked to

Viruses 2021, 13, 1240. https://doi.org/10.3390/v13071240

www.mdpi.com/journal/viruses



Viruses 2021, 13, 1240 2 of 7

one phage. The nine data types are illustrated on the EER diagram as blue boxes and group the tables that contribute to

each data type.

Phage

§ - § families
0] (ii) i (ix

i) (iv) (V) (vi)(vii) (viii)

S2 Fig. Distribution of bacterial genera across EADs and CBDs. The color bar on the right denotes the probability
that a phage lytic protein is associated with a specific host, given that it contains a certain domain (dark red = 1; light
yellow = 0). The examined phyla from left to right, separated by dashed and full lines, are: (i) Actinobacteria without
Mycobacteriaceae (family), (ii) Firmicutes, (iii) Mycobacteriaceae (family), (iv) Bacteroidetes, (v) Cyanobacteria, (vi)
Deinococcus-Thermus, (vii) Fusobacteria, (viii) Proteobacteria and (ix) Spirochaetes. The enzymatic domains from top

to bottom, separated by dashed lines, are: (A) N-acetylmuramoyl-L-alanine amidases, (B) domains with mixed N-

acetylmuramoyl-L-alanine amidases and peptidase activity, (C) peptidase domains, (D) N-acetyl-B--D-glucosaminidase

domains, (E) N-acetyl-B-D-muramidase domains, (F) domains with N-acetyl-B-D-muramidase and lytic

transglycosylase activity and (G) lytic transglycosylase domains. On the bottom, probabilities are visualized grouped
given the domain type. On the right, the overall probability of a given Gram-type as well as phage family are set out

for each domain.
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S3 Fig. Distribution of all domains across bacterial genera. The color bar on the right denotes the probability that a
domain occurs for a phage lytic protein given its bacterial host (dark blue = 1; white = 0). The examined host phyla from
top to bottom, separated by dashed and full lines, are: (i) Actinobacteria without Mycobacteriaceae (family), (ii)
Firmicutes, (iii) Mycobacteriaceae (family), (iv) Bacteroidetes, (v) Cyanobacteria, (vi) Deinococcus-Thermus, (vii)
Fusobacteria, (viii) Proteobacteria and (ix) Spirochaetes. The enzymatic domains from left to right, separated by dashed

lines, are: (A) N-acetylmuramoyl-L-alanine amidases, (B) domains with mixed N-acetylmuramoyl-L-alanine amidases

and peptidase activity, (C) peptidase domains, (D) N-acetyl- B -D-glucosaminidase domains, (E) N-acetyl--D-

muramidase domains, (F) domains with N-acetyl-B-D-muramidase and lytic transglycosylase activity and (G) lytic

transglycosylase domains. On the bottom, probabilities are visualized grouped given the host Gram-types as well as
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the phage families and on the right, the overall probability of domains of a given activity are set out for each bacterial

host.
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S4 Fig. Distribution of bacterial genera across all domains. The color bar on the right denotes the probability that a
phage lytic protein is associated with a specific host, given that it contains a certain domain (dark red = 1; light yellow
= 0). The examined phyla from left to right, separated by dashed and full lines, are: (i) Actinobacteria without
Mycobacteriaceae (family), (ii) Firmicutes, (iii) Mycobacteriaceae (family), (iv) Bacteroidetes, (v) Cyanobacteria, (vi)
Deinococcus-Thermus, (vii) Fusobacteria, (viii) Proteobacteria and (ix) Spirochaetes. The enzymatic domains from top

to bottom, separated by dashed lines, are: (A) N-acetylmuramoyl-L-alanine amidases, (B) domains with mixed N-

acetylmuramoyl-L-alanine amidases and peptidase activity, (C) peptidase domains, (D) N-acetyl-B-D-glucosaminidase

domains, (E) N-acetyl-B-D-muramidase domains, (F) domains with N-acetyl-B-D-muramidase and lytic
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transglycosylase activity and (G) lytic transglycosylase domains. On the bottom, probabilities are visualized grouped
given the domain type. On the right, the overall probability of a given Gram-type as well as phage family are set out

for each domain.
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S5 Fig. Decision rules for phage lytic proteins targeting bacteria from all clades that have more than 25 related
proteins in PhalLP as predicted by SkopeRules. For each branch, a set of decision rules is set out describing the domains
necessary in a protein for the SkopeRules machine learning model to predict it as belonging to that branch. The ‘+
describes domains that should be present regardless of order, while subsequent domains in the architecture are grouped
between curly brackets. When a domain should be absent instead of present, this is denoted by a negation sign ‘~’. Each

rule is preceded by its resulting F-score. Only rules with precision and recall greater than or equal to 0.5 are printed.

S1 File. Pairwise comparison of overlapping domain profiles. The excel file shows a pairwise comparison of each pair
of domain profiles. Left (columns E to HD): the average overlap between each pair was calculated as the fraction
between the overlapping section and the largest domain profile. Click on the cell to see all digits. Right (columns HG to
PF): the absolute number of overlaps between each pair of domain profiles is also displayed. The cells are colored

according to a scale. Left: 1 = white, 0.5 is red, 0 is black. Right: maximum = white, 1 is red, 0 is black.

S2 File. Design tree for phage lytic proteins targeting bacteria from all clades that have more than 25 related proteins
in PhaLP. Per position, square brackets contain different domains that can occur at that position. To simplify the designs,
CBD homorepeats were condensed to a single occurrence of the domain. To accommodate for architectures of one up
to three domains, the subscript ‘x0-1" has been added to indicate domains that either do not occur or occur once. The
spreadsheet also provides the F-score as a measure of how many of the actual architectures fit the rule, as well the

support, signifying the total amount of proteins corresponding to this branch.

S3 File. Cluster analysis of the pairwise protein sequence similarity between endolysins. The first tab contains a
navigable heatmap with normalized similarity scores as illustrated in Fig 8. The next 45 tabs contain annotations on

architecture, accession and host of each protein in the respective cluster. Cluster 45 is composed of all remaining clusters.



