
We have provided a detailed description of the four networks and a comparison between 
them in a supplementary file. Our code and the labelled data are also released in Github, 
which would be helpful to readers and could be applied in other studies. 

Below are the details of our methods, which are provided in the supplementary file. 

ResNet. We know that the deeper the network is, the more information can be obtained. 
However, as the network deepens, the optimisation becomes less effective and the 
accuracy of the test and training data would decrease. This is due to the problem of 
gradient explosion and gradient disappearance caused by deeper networks. It is 
common to normalise the input data and the data in the intermediate layers, which 
ensures that the network uses stochastic gradient descent (SGD) in back propagation, 
thus allowing the network to converge. However, this is only useful for networks of a 
few dozen layers and is useless when the network goes further down. ResNet was 
proposed in 2015 to address the problem of overfitting in deep neural networks. In 
ResNet's neural network, the problem of gradient disappearance is mitigated by 
proposing a residual structure (Figure 1of He et al., 2016), allowing the neural network 
to build ultra-deep network structures with more than 1000 layers. In this neural 
network, the dropout (randomly deactivated partial neurons) method is abandoned and 
the batch normalisation method is used. 

Figure S1. CNN structure of ResNet-50 

Figure S1 shows the main structure of a 50-layer ResNet neural network. As can be 
seen from the figure, the length and width of the extracted feature layers become smaller 
as the network progresses, but the number of channels increases, indicating that deep 
learning neural networks can extract more abstract and complex features that are likely 
to extract the essential features of the data. 

Swim Transformer. Since the Transformer's breakthrough in natural language 
processing (NLP) tasks, computer scientists have been trying to use the Transformer in 
the CV field. Most of the hyperparameters commonly found in CNN networks can also 
be manually adjusted in Swin Transformer, such as the number of network blocks, the 
number of layers in each block, the size of the input image, etc. The network 
architecture is cleverly designed and is a wonderful application of the Transformer to 
the image domain. the input to the Swin Transformer is the original size of the image, 



e.g. 224*224 for ImageNet. in addition the Swin Transformer uses the most common 
hierarchical network structure used in CNNs. A particularly important aspect of CNNs 
is that as the network hierarchy deepens, the receptive field also expands, and this is 
also satisfied in Swin Transformer. 

Swin Transformer proposes four network frameworks, from small to large, namely 
Swin-T, Swin-S, Swin-B and Swin-L. In this study, Swin-T was used for training, and 
the structure of Swin-T is shown in Figure S2(a). Swin Transformer Block, which is 
shown in Figure S2(b). 

Figure S2. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive 
Swin Transformer Blocks (From Liu et al.,2021) 

The network structure of the Swin Transformer is very simple, consisting of four stages 
and an output header, and is very easy to extend. the network framework of the four 
stages of the Swin Transformer is the same, and each stage has only a few basic super-
references to adjust, including the number of hidden nodes, the number of network 
layers, the number of multi-headed self-attentive heads, the downsampling scale, etc. 
These hyperparameters will be shown in detail in our code. 

MobileVit. It combines the advantages of CNN and ViT to build a lightweight, generic 
and mobile-friendly network model. Taking a different perspective allows Transformer 
to process information as a convolution. MobileViT significantly outperforms CNN and 
ViT based (e.g. Mobilenetv1, MNASNet and MixNet) networks on different tasks and 
datasets. It also has better generalisation capability, which is the gap between training 
and evaluation metrics. For two models with similar training metrics, the model with 
better evaluation metrics is more generalisable because it can better predict unseen 
datasets. Compared to CNN, which has poor generalisation ability even with extensive 
data augmentation, MobileViT shows better generalisation ability. 

The aim of MobileViT Block is to model the local and global information in the input 
tensor with a small number of parameters. For a given input tensor𝑋 ∈ 𝑅ு×௪×஼  , 
MobileViT first applies an n×n standard convolutional layer and then generates 
features𝑋௅ ∈ 𝑅ு×௪×ௗ using 1×1 convolutional layer. n×n convolutional layers encode 
local spatial information, while point convolution projects the tensor into a higher 
dimensional space (d-dimensional, where d>c) by learning a linear combination of 
input channels. 



ConvNeXt. ConvNeXt is an improved version of the classical ResNet50/200 network 
based on some of the advanced ideas of the Transformer network, which combines the 
advantages of both networks by introducing some of the latest ideas and techniques of 
the Transformer network into the existing modules of the CNN network. The main 
optimisations made are: (1) increase the number of training Epochs from 90 to 300; (2) 
change the optimizer from SGD to AdamW; (3) more sophisticated data expansion 
strategies, including Mixup, CutMix, RandAugment, Random Erasing, etc.; (4) add 
regular strategies, such as random depth, label smoothing, EMA, etc. More specific 
hyperparameters for pre-training and fine-tuning can be found in our code. The 
improvements made to ConvNeXt and the result of these improvements are shown in 
Figure S3. 

Both the ResNet and Swin-T networks have four stages, and the ratio of stacked blocks 
in each stage is 1:1:3:1 for Swin-T and 1:1:9:3 for Swin-L. From this, we can see that 
the third layer of the Transformer network has more stacks, so the ConvNeXt network 
adjusts the number of stacks in each stage of ResNet from (3, 4, 6, 3) to (3, 3, 9, 3) in 
this ratio, and keeps the ratio at 1:1:3:1. The ConvNeXt network replaces the stem layer 
with the same convolutional kernel size of 4 and step size of 4 as the Swin-T network, 
with a small improvement in accuracy and GFLOPs. The MLP module in the 
Transformer network is similar to the Inverted Bottleneck module in MobileNet V2 in 
that it has a "thin end, thick middle" anti-bottleneck structure. Consequently, the 
ConvNeXt network is designed with a similar Inverted bottleneck structure in mind. 

At the same time moving up the depth convolution layer and increasing the number of 
convolution kernels, and replacing the RELU with the more common GELU activation 
function, using only one activation function and one regularisation function in each 
block, with the regularisation function again BN replaced with LN, and a separate 
downsampling layer at the end designed to perform separate downsampling operations 
on the features. 

With these five operations referenced above from the Swin-T network, the existing 
modules in the classic ResNet50 network were transformed into a new ConvNeXt 
network. The new network achieves a significant improvement in accuracy for the same 
parameter size. 

We compared four algorithms, ResNet-50, ConvNeXt, Swim Transformer and 
MobileViT, with training times of 1.9h, 4.0h, 3.8h and 1.4h. In all of the above 
algorithms, we use transfer learning, which has the advantage of being able to improve 
the accuracy of the initial training and significantly reduce the training time. If we did 
not use transfer learning, we would need many more iterations and the training time 
would be much longer. We ran the above code on a laptop with a four-core Intel i7-
1165G7 CPU @ 2.80GHz. 

So our different algorithms have their own strengths. When we want to spend less 
training or the computer performance is insufficient, we can choose the MobileViT and 



ResNet-50 algorithm. When we want to pursue higher accuracy, we can choose 
ConvNeXt. Or when we focus on different auroral subcategories, we choose different 
networks (Figure 3). For example, when we focus on moon, we can choose Swim 
Transformer, and when studying diffuse and discrete, we can choose ConvNeXt 
algorithm. 

The F1-score combines the precision and recall of a classifier into a single metric by 
taking their harmonic mean. It is primarily used to compare the performance of two 
classifiers. Suppose that classifier A has a higher recall, and classifier B has higher 
precision. In this case, the F1-scores for both the classifiers can be used to determine 
which one produces better results. The maximum value of F1 is 1, and the minimum 
value is 0. The larger the value, the better the performance. 

More details about the algorithm are shown in our released code. 

 

Figure S3. ConvNeXt algorithm improvements and results (from Liu 
et al.,2022) 


