Supplementary material

Time dependent models

Here we offer more detail as to how time dependence is included into an SDM/ENM. We consider a time
dependent variable of interest, v(t), defined by an epidemiological “who” ensemble, such as confirmed
cases, deaths for age group > 60, mortality etc. The variable of interest may be ordinal, nominal or
interval, and extensive or intensive. Its calculation requires a discretisation in time, so we may consider
Nr time intervals, each of duration dt, to yield a total time period Ar = Nr * §t. We may consider a
variable v(¢, dt) specified over an interval of time ¢, such as the number of confirmed cases of COVID-19
in the ith time interval, d¢;, or over the entire period, Ar. We may further consider vq(t,dt), now
calculated for a spatial cell « on a grid partition of Ny spatial cells on a region of interest. For instance,
the number of confirmed cases in a country, «, in a month, §t, beginning at ¢ being the first of June,
2021. Thus, (a, dt;) defines a spatio-temporal cell, to which we can assign a value of v(t), v(«, dt;). A
target class C' can be formed via any criterion that specifies a subset Sc x T C S x T of cells. For
instance, those spatial cells that have confirmed cases in the time interval dt;, or the 10% of spatial cells
that have the highest mortality, as calculated in the interval d¢;. Taking the discretisation («, dt;) as the
finest resolution, then v(AS, AT) can be calculated for any spatial region AS and time interval AT. In
the case of an extensive variable, such as number of deaths, this corresponds to a simple aggregation.

Turning now to the habitat variables, X; in the same way, we can define a habitat variable X;(a, dt;)
on a spatial cell in the time interval d¢;. It may be that X;(«,dt;) = X;(a), i.e., it is independent of
time over the interval of interest. For instance, over the lifetime of the pandemic we may take a climatic
variable, such as average annual temperature, to be constant. On the other hand, if X;(«, dt;) represents
the number of confirmed cases in the interval d¢;, to be used as a niche variable, then certainly it will
not be constant. The validity of an assumption of equilibrium depends on the rates of change and the
magnitudes of change of C' and X over the time period of interest. If the changes are slow and small
over this period, then equilibrium may be a good approximation. Clearly, many variables of interest for
COVID-19 are changing rapidly, such as vaccination rates, social distancing measures, travel restrictions
etc.

Considering first a purely spatial model, we calculate P(C(t)|X(t)) using the formalism of Method
section. This will be calculated using data for a period Ar. A score for a niche variable X" (¢) is given by

S(XP'(1) = (G piaa)» where P(X(1)|C(1) = N(XT()C()/N(C(1)) and P(XI"()|C(1) =
(N(X(t) = N(X{()C(t)) /(N —=N(C(t)). N(X{"(t)C(t)) is the number of cells with a co-occurrence
of X;"(t) and C(t). For example, C(t) could represent the 10% of cells (Mexican municipalities) with
the highest number of cases in month ¢, while X;"(¢) could represent a dynamic habitat variable, such
as the 10% of municipalities with the highest average mobility in that month, or a more static variable,
such as the 10% of municipalities with the highest average income, or those municipalities that have
pixels from an average annual temperature raster in the range 20.6 — 22.3deg C. N(X["(¢t)C(t)) thus
counts, for example, the number of municipalities that are in the top 10% with the highest number of
cases in month ¢ and that also are in the top 10% of municipalities with the highest intra-municipal
daily labor flows. We can calculate s(X;"(¢)) in different time intervals, ¢;, and compare s(X;"(¢;)) with
s(X{"(t;)). This can be done for all X;* and the degree of correlation in time calculated.

Although X" (t) and C(t) may change in time, this does not imply that the ENM P(C(t)|X(t))
itself changes in time. The difference between s(X;"(¢;)) and s(X;"(¢;)), however, will inform us of any
changes in the ENM itself. In the case that the niche is conserved, i.e., s(X;"(¢)) ~ s(Xi"(t;)), to
predict the spatial distribution of the target class at t’, we use the scores, s(X;"(t)), from the ENM at
time ¢. For a given spatial cell, o at time ¢’ > ¢, we associate the score contribution s(X;"(a,t")). Thus,
for example, if X; is divided into deciles, X", m = [1, 10], a given spatial cell at time ¢ may be associated
with decile m, whereas at time ¢’ it may be associated with a different decile m’, so that the cell a has
become more niche-like/anti-niche-like in the cases that s(X;") < s(Xim/) or > s(Xim/) respectively.

Niche conservation implies that for a given habitat state, X, then P(C(t)|X) will not depend on
time, i.e., there is the same probability to find the target species at any time ¢. When the niche is
not conserved, however, then P(C(t)|X) # P(C(t')|X), i.e., the probability to find the target species
given a certain habitat changes. In this case, the ENM P(C(t)|X(t)) will have limited predictability
for ' > t. To handle this situation we must only use P(C(t)|X(t)) to predict into the future with a
time horizon Ay = (¢’ —t) such that s(X;"(t;)) ~ s(X/"(t;)). We may then create a new model at
t+ Am, P(C(t+ An)|X(t + Ag)) and use it to predict at ¢ + 2Ay and so on. In terms of a SDM,
the fact that the habitat is changing means that spatial cells where the species was present/absent at ¢
may now exhibit absence/presence. A useful way to quantify this, instead of using as target where the
species is present in a given time period, is to focus on the changes between one period and the next.
For example, we can take as target Ac(t,t’) those spatial cells where the species was present/absent in
period t but then is absent/present in period #'. An explicit example is to consider those spatial cells
where there were no confirmed cases in period ¢t — 1 but there were cases in period t. The data for the
pair of periods t — 1 and ¢t is taken as training data and the corresponding scores calculated. The target
class, Acy, (t,t — 1), now consists of those spatial cells where there was an absence, C(t — 1) = 0, in
period ¢t — 1 and a presence, C(t) = 1, in period ¢.

Thus, for a habitat variable X" one calculates the score s(X"(t — 1)) = In(P(X{"(t — 1)|Acy, (¢, t —
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D) /(POX(t = DIAy, (8.t — 1)), where POXT"(t = D|Acy, (¢ — 1) = N(Acy, (t,¢ — DXt -
1))/N(Dcy, (8.t — 1) and PXI(E = D] Agy, (bt — 1) = N(Agy, (¢, = DX (E— 1)) /N(Aey, (1~ 1),
where Co1(t,t— 1) is the set complement of Ac,, (t,t —1). The scores s(X;" (¢t —1)) now define the ENM
which can now be applied to the habitat variables X;"(t) at time ¢ to predict those cells that have an
absence for confirmed cases at ¢ but are predicted to have cases at ¢t + 1. Similarly, for the class variable
being top 10% of municipalities with highest number of cases, we may consider Ac,, (t,¢ — 1) to repre-
sent those municipalities that were not in the top 10% at ¢ — 1 but, due to a worsening epidemiological
situation, passed into the top 10% at time t.

Finally, although we will not enter into detail here, we may also consider as habitat variables, changes
in the habitat. For example, we may consider A xmm! (t,t"), which represents those cells where there was

a change in the habitat variable X; from bin m’ to bin m passing from period ¢’ to period t.
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