
Supplementary Materials 

S1 Baseline datasets 

28 real regression data sets with varying numbers of features (2 to 40) and sample 

sizes (337 to 40,768) are used as baseline datasets. According to the feature dimension, 

the datasets are divided into two categories: 11 low-dimensional data sets and 17 high-

dimensional data sets. TABLE 1 and TABLE 2 show the detailed information of the 

above two datasets, respectively, including the names, abbreviations, feature numbers, 

and sample sizes. 

TABLE S1. The low-dimensional data sets 

Data sets Abbreviation No. of features No. of samples 

Electrical Length ELE1 2 495 

Plastic Strength PLA 2 1650 

Quake QUA 3 2178 

Electrical Maintenance ELE2 4 1056 

Friedman FRIE 5 1200 

Auto MPG6 MPG6 5 398 

Delta Ailerons DELAIL 5 7129 

Daily Electricity Energy DEE 6 365 

Delta Elevators DELELV 6 9517 

Analcat ANA 7 4052 

Auto MPG8 MPG8 7 398 

TABLE S2. The high-dimensional data sets 

Data sets Abbreviation No. of features No. of samples 

Abalone ABA 8 4177 

California Housing CAL 8 20640 

Concrete Concessive Strength CON 8 1030 

Stock prices STP 9 950 

Weather Ankara WAN 9 1609 

Weather Izmir WIZ 9 1461 

MV Artificial Domain MV 10 40768 

Forest Fires FOR 12 517 

Mortgage MOR 15 1049 

Treasury TRE 5 1049 

Baseball BAS 16 337 

House-16H HOU 16 22784 

Elevators ELV 18 16559 

Computer Activity CA 21 8192 

Pole Telecommunications POLE 26 14998 

Pumadyn PUM 32 8192 

Ailerons AIL 40 13750 

 



S2 FNNR-M 

The FNNR using Mamdani fuzzy rules is illustrated in Figure 1. 

 

Figure S1. The structure of the FNNR-M 

It can be observed that the output layers of FNNR-M consist of one consequent layer 
and one sum layer. The nodes of the consequent layer represent the fuzzy sets of the 
output variable, and the number of nodes represents the fuzzy partition number of the 
output variable, which is set to MH  . The parameters of the consequent layer are 

continuous real values in the interval [0,1], representing the weight of each rule. The 
consequent layer is fully connected with the fuzzy logic layers, and the output of each 
consequent layer node is the weighted sum of firing strengths of the rules whose 
consequent is the corresponding fuzzy set. The output of the sum layer is shown in 
Equation (1): 
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where 

ic  is the parameter of the edge connecting the node of the sum layer and the ith 

node of the consequent layer, which represents the center of the consequent fuzzy set, 
that is, the mean value of the Gaussian membership functions (MFs). iu  is the output 

of the ith consequent layer. Mamdani fuzzy rules can be directly extracted from the 
trained FNNR-M. For the FNNR-M, the parameter scale of the output layers is MH K , 

where K is the number of nodes in fuzzy logic layers. 

S3 FNNR-F 

Replace the output layers of the FNNR with fully connected layers, and the model 

after the replacement is called the FNNR-F. 



 

Figure S2. The structure of the FNNR-F 

In the FNNR-F, the output layers are composed of the fully connected layers and 
one sum layer, where the fully connected layers are fully connected with fuzzy logic 
layers. The layer number of fully connected layers is set as ( 1)F FI I , and the number 

of nodes of each layer is set as Fn . The ReLU function is utilized as the activation 

function. The parameter scale of the output layers is ( 1) F F FI n + +n K . 

S4 Time complexity analysis of the three models 

Figure 3 reveals the normalized training time of the three models. In the figure, 

before and after the dotted line are the training time of each model on low- dimensional 

and high-dimensional data sets, respectively. It can be observed that on most low-

dimensional data sets, there are little differences in the time consumptions of the three 

models, but generally, the training time of FNNR-F is relatively longer (the FNNR-F 

spends the longest time on 6 of 11 data sets). This is because for the FNNR-F, the 

number of parameters is large and the complexity is high. The training time of the 

FNNR-T is advantageous on data sets with relatively large sample sizes like DELAIL, 

DELELV, and ANA.  

On high-dimensional data sets, the FNNR-T has an advantage in time consumption 

on data sets with relatively large sample sizes like CAL and MV, while the consumed 

time of the FNNR-M is long. As the number of features increases, the time consuming 

of the FNNR-T also increases, which is the result of the positive correlation between 

the model complexity of the FNNR-T and its feature dimension. The running time of 

FNNR-M is overall middle-ranking. The FNNR-F takes the longest time on most data 

sets, and the time on datasets with large features and large sample sizes is slightly 

shorter than that of the FNNR-T. 



 

Figure S3. The normalized training time of the FNNR-M, FNNR-F, and FNNR-T on 28 data 

sets 

S5 The experimental results of the three models on the ablation study of the 

alternate training strategy 

TABLE III shows the average MSEs of the three models on 28 data sets using the 

alternate training strategy and the normal training method. To highlight the role of 

alternate training strategy, parameters of MFs and fuzzy partitions are fixed during the 

training, and the whole training is only divided into two stages: the stage of joint 

training and the stage of the fixed fuzzy logic layer. As can be observed from TABLE 

III, regardless of the model, on most data sets, the regression errors obtained by utilizing 

the alternate training strategy are lower (2% to 80%) than that obtained by using the 

normal training method. 

TABLE S3. The average prediction errors of the three models with alternate training strategy 

and normal training method on 28 data sets 

Data sets 
 FNNR-M  FNNR-F  FNNR-T 

 Alternate Normal  Alternate Normal  Alternate Normal 

ELE1  1.622 1.774  1.361 1.642  1.504 1.526 

PLA  1.080 1.116  1.062 1.157  1.095 1.129 

QUA  0.018 0.0190  0.0184 0.0189  0.0192 0.0193 

ELE2  5882 8147  2585 12831  3922 7586 

FRIE  0.608 0.699  0.682 0.784  0.605 0.630 

MPG6  3.618 3.755  3.623 3.769  3.696 3.759 

DELAIL  1.513 1.498  1.396 1.625  1.456 1.897 

DEE  0.077 0.081  0.0767 0.0876  0.080 0.083 

DELELV  1.017 1.021  0.928 1.012  1.015 1.042 

ANA  0.003 0.004  0.003 0.005  0.004 0.004 

MPG8  3.402 3.593  2.700 3.180  3.095 3.215 

ABA  2.080 2.087  1.973 2.162  2.050 2.050 

CAL  1.714 2.088  1.582 2.060  1.674 2.061 

CON  17.08 27.54  16.375 42.13  15.42 21.88 

STP  0.299 0.449  0.279 0.500  0.288 0.362 

WAN  0.729 0.857  0.834 2.216  0.741 1.533 



WIZ  0.697 0.743  0.669 0.828  0.655 0.708 

MV  0.031 0.135  0.048 0.432  0.019 0.125 

FOR  4018 4018  3998 4083  4010 4010 

MOR  0.009 0.009  0.004 0.018  0.003 0.006 

TRE  0.032 0.035  0.025 0.036  0.025 0.031 

BAS  1.796 1.866  1.721 1.591  1.896 1.886 

HOU  6.990 9.218  6.729 7.267  6.850 7.317 

ELV  2.519 2.602  1.987 2.815  2.500 5.963 

CA  3.769 3.838  3.432 4.739  2.766 4.125 

POLE  36.16 58.62  8.788 82.42  25.11 46.11 

PUM  0.326 1.027  0.157 1.447  0.198 0.680 

AIL  1.342 1.338  1.309 1.364  1.303 1.399 

Of course, in a few data sets, the regression MSEs of the model using the normal 

training method are not much different from that using the alternate training strategy, 

and on some data sets, the formers are even smaller, which are underlined in the table. 

This is because, under the alternate training strategy, different parameters are trained 

separately, and all kinds of parameters need more time to “run in” with each other to 

achieve the optimal solution. This means that although the alternate training strategy 

can help the model converge eventually, it also prolongs the time of convergence, while 

for the normal training method, the global optimal solution may be found in advance 

on occasion although it can cause the constant oscillation of parameters. 


