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Figure S1. Molecular structures of 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone (1) [1] 
and 1,4-dihydroxy-anthraquinone (2) [2] with atoms numbering scheme prepared for the 
study. Only atoms of interest are indicated. Aromatic rings are indicated as well and the 
notation was used for HOMA aromaticity index.  
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Figure S2. Experimental values (X-ray) of intramolecular hydrogen bonds present in the 2,3-
dichloro-5,8-dihydroxy-1,4-naphthoquinone (1) [1] and 1,4-dihydroxy-anthraquinone (2) [2]. 
Atoms coloring scheme: red –oxygen atom, grey – carbon atoms, green – chlorine atom, 
white – hydrogen atom. 
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Table S1. The intramolecular hydrogen bond metric parameters of 2,3-dichloro-5,8-
dihydroxy-1,4-naphthoquinone (only one intramolecular hydrogen bond was taken into 
account because of symmetry of the molecule). The simulations were performed at DFT level 
of theory with 6-311+G(2d,2p) basis set and various functionals for benchmarking as it is 
shown in the Table. The interatomic distances are given in [Å]. 

Metric 
parameters 

Functionals 

B3LYP [3] PBE [4] ωB97XD [5] 

Simulations in vacuo 

O1…O2 2.5705 2.5325 2.5794 

O1-HBP1 0.9887 1.0197 0.9798 

HBP1...O2 1.6877 1.5900 1.7131 

∠∠∠∠O1HBP1O2 [º] 146.47 151.36 145.26 

Simulations with solvent reaction field (PCM model and water as a solvent) 

O1…O2 2.5701 2.5316 2.5796 

O1-HBP1 0.9887 1.0196 0.9797 

HBP1...O2 1.6851 1.5874 1.7121 

∠∠∠∠O1HBP1O2 [º] 146.80 151.68 145.45 
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Table S2. The intramolecular hydrogen bond metric parameters of 1,4-dihydroxy-
anthraquinone (only one intramolecular hydrogen bond was taken into account because of 
symmetry of the molecule). The simulations were performed at DFT level of theory with 6-
311+G(2d,2p) basis set and various functionals for benchmarking as it is shown in the Table. 
The interatomic distances are given in [Å]. 

Metric 
parameters 

Functionals 

B3LYP [3] PBE [4] ωB97XD [5] 

Simulations in vacuo 

O1…O2 2.5569 2.5236 2.5654 

O1-HBP1 0.9903 1.0208 0.9812 

HBP1...O2 1.6664 1.5770 1.6909 

∠∠∠∠O1HBP1O2 [º] 147.38 151.89 146.26 

Simulations with solvent reaction field (PCM model and water as a solvent) 

O1…O2 2.5497 2.5170 2.5591 

O1-HBP1 0.9915 1.0225 0.9822 

HBP1...O2 1.6536 1.5651 1.6798 

∠∠∠∠O1HBP1O2 [º] 148.08 152.55 146.83 
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Figure S3. The comparison of calculated at the B3LYP/6-311+G(2d,2p) level of theory (left 
1) and experimental – X-ray data (right 2) [1] structures of trimers of 2,3-dichloro-5,8-
dihydroxy-1,4-naphthoquinone. 
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Figure S4. The comparison of calculated at the B3LYP/6-311+G(2d,2p) level of theory (left 
1) and experimental – X-ray data (right 2) [2] structures of trimers of 1,4-dihydroxy-
anthraquinone. The dotted lines indicate the shortest intermolecular contact distances. 
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Table S3. Computed values of HOMA aromaticity index for 2,3-dichloro-5,8-dihydroxy-1,4-
naphthoquinone. The simulations were performed at ωB97XD/6-311+G(2d,2p) level of 
theory in the gas phase and with PCM solvation model (water was used as a solvent). The 
structure of the compound with the rings indication is presented in Figure S1. 

Structures Rings 

HOMA aromaticity 

index 

Gas phase Water 

1 
A 0.872 0.870 

B -0.448 -0.398 

2 
A 0.860 0.859 

B -0.396 -0.347 

3 
A 0.845 0.844 

B -0.328 -0.280 

4 
A 0.820 0.820 

B -0.242 -0.193 

5 
A 0.781 0.781 

B -0.139 -0.090 

6 
A 0.726 0.727 

B -0.043 0.005 

7 
A 0.665 0.666 

B 0.031 0.082 

8 
A 0.607 0.609 

B 0.086 0.141 

9 
A 0.554 0.556 

B 0.130 0.187 

10 
A 0.503 0.507 

B 0.164 0.223 

11 
A 0.457 0.460 

B 0.193 0.254 

12 
A 0.410 0.4152 

B 0.217 0.280 

13 
A 0.365 0.371 

B 0.237 0.300 

14 
A 0.321 0.327 

B 0.252 0.317 

15 
A 0.275 0.283 

B 0.265 0.332 

16 
A 0.228 0.237 

B 0.278 0.345 
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Table S4. Computed values of HOMA aromaticity index for 1,4-dihydroxy-anthraquinone. 
The simulations were performed at ωB97XD/6-311+G(2d,2p) level of theory in the gas phase 
and with PCM solvation model (water was used as a solvent). The structure of the compound 
with the rings indication is presented in Figure S1. 

Structures Rings 

HOMA aromaticity 

index 

Gas phase Water 

1 

A 0.874 0.885 

B -0.302 -0.264 

C 0.994 0.994 

2 

A 0.864 0.876 

B -0.255 -0.217 

C 0.994 0.993 

3 

A 0.849 0.864 

B -0.194 -0.157 

C 0.993 0.992 

4 

A 0.827 0.845 

B -0.122 -0.086 

C 0.992 0.991 

5 

A 0.790 0.812 

B -0.046 -0.013 

C 0.990 0.990 

6 

A 0.740 0.765 

B 0.016 0.046 

C 0.989 0.988 

7 

A 0.683 0.712 

B 0.059 0.088 

C 0.987 0.986 

8 

A 0.627 0.661 

B 0.087 0.117 

C 0.986 0.985 

9 

A 0.572 0.610 

B 0.108 0.135 

C 0.985 0.984 

10 

A 0.521 0.560 

B 0.123 0.150 

C 0.984 0.984 

11 

A 0.471 0.515 

B 0.134 0.161 

C 0.984 0.983 
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Table S4 (Continuation). Computed values of HOMA aromaticity index for 1,4-dihydroxy-
anthraquinone. The simulations were performed at ωB97XD/6-311+G(2d,2p) level of theory 
in the gas phase and with PCM solvation model (water and ethanol were used as solvents). 
The structure of the compound with the rings indication is presented in Figure S1. 

Structures Rings 

HOMA aromaticity 

index 

Gas phase Water 

12 

A 0.423 0.468 

B 0.144 0.171 

C 0.983 0.983 

13 

A 0.374 0.421 

B 0.151 0.178 

C 0.983 0.983 

14 

A 0.327 0.375 

B 0.157 0.182 

C 0.983 0.983 

15 

A 0.277 0.327 

B 0.160 0.185 

C 0.983 0.983 

16 

A 0.226 0.279 

B 0.162 0.186 

C 0.983 0.983 
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Figure S5. The evolution of the HOMA aromaticity index for the rings A, B, C (see Figure 
S1) as a function of the O1-HBP1 elongation.  
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Table S5. The values of net atomic charges [e] computed according to AIM at ωB97XD/6-
311+G(2d,2p) level of theory for the 2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone. 

O1-HBP1 [Å]  Proton-donor - O1 atom HBP1 Proton-acceptor - O2 atom 
0.9798 -1.171596 0.657689 -1.112432 
1.0298 -1.156669 0.642683 -1.113748 
1.0798 -1.145249 0.630364 -1.115879 
1.1298 -1.142935 0.625849 -1.118221 
1.1798 -1.147062 0.629388 -1.122833 
1.2298 -1.150862 0.636901 -1.130134 
1.2798 -1.151415 0.644799 -1.138691 
1.3298 -1.149943 0.65284 -1.147477 
1.3798 -1.147571 0.660232 -1.156036 
1.4298 -1.144971 0.666258 -1.162862 
1.4798 -1.142504 0.670211 -1.167252 
1.5298 -1.140054 0.67201 -1.16935 
1.5798 -1.137788 0.672196 -1.169478 
1.6298 -1.135711 0.671005 -1.167992 
1.6798 -1.133651 0.669031 -1.165496 
1.7298 -1.131616 0.666532 -1.162542 
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Table S6. The values of net atomic charges [e] computed according to AIM at ωB97XD/6-
311+G(2d,2p) level of theory for the 1,4-dihydroxy-anthraquinone. 

O1-HBP1 [Å]  Proton-donor - O1 atom HBP1 Proton-acceptor - O2 atom 
0.9812 -1.177572 0.657309 -1.13562 
1.0312 -1.162958 0.642173 -1.136548 
1.0812 -1.15288 0.630074 -1.137724 
1.1312 -1.151144 0.625636 -1.139305 
1.1812 -1.155387 0.628703 -1.14276 
1.2312 -1.159507 0.635267 -1.148654 
1.2812 -1.160815 0.643168 -1.156035 
1.3312 -1.160154 0.65104 -1.164011 
1.3812 -1.158478 0.658691 -1.171967 
1.4312 -1.156524 0.664978 -1.178475 
1.4812 -1.154515 0.668849 -1.182494 
1.5312 -1.152369 0.670781 -1.184533 
1.5812 -1.150359 0.67103 -1.184606 
1.6312 -1.148454 0.669855 -1.183141 
1.6812 -1.146522 0.668331 -1.18077 
1.7312 -1.144638 0.665984 -1.1778 
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Figure S6. Dependence of the electron density (ρ) (upper graphs) and its Laplacian (lower 
graphs) at selected BCPs on the donor O1 – proton HBP1 distance for the studied compounds 1 
and 2.  
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Figure S7. The isosurfaces of the HOMO (left column) and LUMO (right column) orbitals of 
the compounds 1 (upper row) and 2 (lower row). The calculations were carried out using 
B3LYP/6-311+G(2d,2p) level of theory in the gas phase. The differences with the shapes of 
the orbitals when ωB97XD functional was used, or solvent effects included - are negligible. 
The isosurfaces were drawn for the value of 0.01. 
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Figure S8. A detailed view of the proton transfer event as shown by the time evolution of the 
distance parameters in the hydrogen bridges of compound 1 in the crystal. The upper lines: 
donor-acceptor distances r, the lower lines: the corresponding proton position parameters q 
(defined as q = rHBP...O – rO-HBP). Color coding is as follows: red - r(O1...O2), green - 
r(O3...O4), blue - q(O1-HBP1-O2), violet - q(O3-HBP2-O4). 
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