SUPPLEMENTARY MATERIAL — Python Scripts

Scripts
Script 1 Script that was used to automatically assign scores for community income levels

##Name of script: Income2001.py

##Purpose: Automated allocation of scores to communities for the 2001 income levels
data

#Importing system modules

import arcpy

#Input data and input fields and their lengths

table =

fields = [ ’ ’ ' ’ ]
#Adding fields to input table to store maximum and field names

maxfield =

maxname =

scores =

arcpy.AddField management (table, maxfield, )

arcpy.AddField management (table, maxname, )

arcpy.AddField management (table, scores, )

#Adding created fields to the array
fields2 = fields[:] # Shallow copy
fields2.extend([maxfield, maxname, scoresl])
#Checking and updating of fields
with arcpy.da.UpdateCursor (table, fields2) as cursor:
for row in cursor:
arrayVals = [row[0], row[1l], rowl[2], row[3], rowl[4]]
highest = max(arrayVals)
row[5] = highest
row[6] = fields[arrayVals.index(highest)]
if rowl[e] == :
row[7] = 0
cursor.updateRow (row)
elif rowl[6] ==
row[7] =1
cursor.updateRow (row)
elif rowl[e] ==
row[7] = 2
cursor.updateRow (row)
elif rowl[6] ==
row[7] = 3
cursor.updateRow (row)
else:
rowl[7]= 4
cursor.updateRow (row)

Script 2 Script that was used for automated creation of a new shapefile and attribute table
and joining of Age Profile scores to the IndicatorScores table

##Name of script: ScoreInput2001.py

##Purpose: Automated creation of a new shapefile and attribute table for saving an
integration of the four indicator scores and automated joining of the remaining 3
indicator scores to the IndicatorScores table using MP_NAME as the linking field.

#Importing system modules

import arcpy

from arcpy import env

#Setting the environment

env.workspace =

# Specifying the input feature class, output location and feature classes
inFeatures =

outLocation =

outFeatureClass =



# Listing fields to be retained
myfields = [ ’ 1
# Creating an empty field mapping object
mapS = arcpy.FieldMappings ()
# Creating an individual field map each field, and adding it to the field mapping
object
for field in myfields :
map = arcpy.FieldMap ()
map.addInputField(inFeatures, field)
mapS.addFieldMap (map)
# Copying the feature class using the fields
arcpy.FeatureClassToFeatureClass conversion (inFeatures, outLocation,
outFeatureClass, field mapping=mapS)
#Joining the remaining 3 indicator scores for different fields into one table

arcpy.JoinField management ( ' ’ ' ’
)

arcpy.JoinField management ( ' ’ ' ’
)

arcpy.JoinField management ( ' ’ ’ ’

)

Script 3:  Script that was used for joining of the remaining 3 indicator scores to the
IndicatorsScores table using MP_ NAME as the linking field

## Name of script: AD2001.py
## Purpose: Automated summation and ranking of the four indicator scores for year
2001
#Importing system modules
import arcpy, math
#Importing scores from indicator attribute tables into the Adaptive capacity
shapefile
table =
fields = [ ' ’ ’ ]
# Adding fields to input table to store maximum and field name
total =
rating =
arcpy.AddField management (table, total, )
arcpy.AddField management (table, rating,
#Adding created fields to the array
fields2 = fieldsl:]
fields2.extend([total, ratingl)
#Classifying community-level adaptive capacity scores
with arcpy.da.UpdateCursor(table, fields2) as cursor:
for row in cursor:
arrayVals = [row[0], row[l], row[2], rowl[3]]
#Calculating adaptive capacity for each community by summing the 4 indicator scores
summation = sum(arrayVals)
row[4] = summation
#Allocating the adaptive capacity rating
if rowl[4] <=5:
row[5] =
cursor.updateRow (row)
elif row[4]> 5 and row[4]<=10:
row[5] =
cursor.updateRow (row)
else:
row[5]=
cursor.updateRow (row)

~



Script 4: Script that was used for joining of the remaining 3 indicator scores to the
IndicatorsScores table using MP_ NAME as the linking field

## Name of script: AD Change.py

## Purpose: Automated creation of a new shapefile and saving adaptive capacities
for years 2001 and 2011 into one attribute table

#Importing system modules

import arcpy

from arcpy import env

#Setting the environment

env.workspace =

# Specifying of input feature class, output location and feature classes
inFeatures =

outLocation =

outFeatureClass =

# Listing of fields to be retained
myfields = [ ' 1

# Creating an empty field mapping object
mapS = arcpy.FieldMappings ()
# Creating an individual field map for each field and adding it to the field
mapping object
for field in myfields :
map = arcpy.FieldMap ()
map.addInputField(inFeatures, field)
mapS.addFieldMap (map)
# Copying the feature class using the fields
arcpy.FeatureclassToFeatureClass_conversion(inFeatures, outLocation,
outFeatureClass, field mapping=mapS)
#Joining of Adaptive capacity 2001 field to the Adaptive capacity 2011 field to
create one table

arcpy.JoinField management ( ’ ’ ’ ’
)
Script 5 Script that was used for calculating changes in adaptive capacities between 2001
and 2011

## Name of script: Diff.py
## Purpose: Calculating changes in adaptive capacities between years 2001 to 2011
#Importing system modules
import arcpy, math
# Selecting fields of interest from attribute table in shapefile
table =
fields = [ ’ 1
# Adding new fields to table to store calculated differences in adaptive capacity
difference =
change =
arcpy.AddField management (table, difference, )
arcpy.AddField management (table, change, )
#Adding created fields to the array
fields2 = fieldsl[:]
fields2.extend([difference, changel)
#Classifying the changes in adaptive capacity
with arcpy.da.UpdateCursor(table, fields2) as cursor:
for row in cursor:

arrayVals = [row[0], row[1]]
#Subtracting the 2001 adaptive capacity from the 2011 adaptive capacity
row[2] = row[0] - rowl[1l]
#Allocating the adaptive capacity change
if rowl[2] <= -1:

row[3] =

cursor.updateRow (row)
elif row[2] == O0:

row[3] =

cursor.updateRow (row)
else:

row[3]=

cursor.updateRow (row)



Script 6 Script that was used for calculating the final adaptive capacity using average

soil moisture, arable lands and socio-economic data
## Name of script: Final AD.py
## Purpose: Summation and ranking of the three indicators for assessing adaptive
capacity
#Importing system modules
import arcpy, math
#Importing scores from indicator attribute tables into the Adaptive capacity

#shapefile

table =

fields = [ ]

# Adding fields to input table to store maximum and field name
total =

rating =

arcpy.AddField management (table, total, )

arcpy.AddField management (table, rating,
#Adding created fields to the array
fields2 = fieldslI:]
fields2.extend([total, ratingl)
#Classifying community-level indicator scores
with arcpy.da.UpdateCursor(table, fields2) as cursor:
for row in cursor:
arrayVals = [row[0], row[1l], row[2]]
#Calculating adaptive capacity for each community by summing the 3 indicator scores
summation = sum(arrayVals)
row[3] = summation
#Allocating the final adaptive capacity rating
if row[3] <=4:
row[4] =
cursor.updateRow (row)
elif row[3]> 4 and rowl[3]<=6:
row[4] =
cursor.updateRow (row)
else:
row[4]=
cursor.updateRow (row)

~



