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Sections S1-S4: Supplementary Materials for Research Question 1 

S1. Greenwashing as Fake News 

Table S1. Greenwashing as Different Types of Fake News 

Fake News 

Concept 

Examples Authenticity  

(Ease of Verification)  

Intention Information 

Source 

Sample Papers 

Disinformation Deceptive news Non-factual (Easy) Mislead News / Message Allcott and Gentzkow (2017) 

False News Non-factual (Easy) Mislead/ Mistake News Vosoughi et al. (2018) 

Hoax Non-factual (Easy) Mislead Message / News Wardle and Derekshan (2017) 

Fake reviews Non-factual (Moderate) Mislead Message Wu et al. (2020) 

Greenwashing Non-factual (Difficult) Mislead Message Marquis et al. (2016)  

Misinformation Conspiracy  Non-factual / factual (Moderate) Mislead / Mistake Message Zannettou et al. (2019) 

Satire News Non-factual (Easy) Entertain News Tandoc et al. (2018) 

Pseudoscience Non-factual (Easy) Mislead / Mistake Message Rubin et al (2015) 

False connection Non-factual (Easy) Mislead / Mistake News Ireton and Posetti (2018) 

Greenwashing  Non-factual (Moderate) Mistake Message Szabo & Webster (2021) 

Malinformation 

 

Cherry-picking Factual (Moderate) Mislead Message / News Asudeh et al. (2020) 

Clickbait Factual (Moderate) Mislead News Chen et al. (2015) 

Rumor Non-factual / factual (Difficult) Mislead / Mistake Message Zubiaga et al. (2018) 

Trolling Non-factual / factual (Difficult) Harass Message Wardle 2018 (2018) 

Greenwashing Non-factual / factual (Difficult) Mislead Message Bowen and Aragon-Correa (2014) 
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S2. Comparisons with Current Fake News Detection Methods 

Current automatic fake news detection methods are broadly categorized as knowledge-, propagation-, 

source-, and linguistic style-based approaches (Zhou & Zafarani, 2020) – see Table S2. Knowledge-based 

detection methods attempt to address the authenticity problem by using fact extraction and knowledge graphs 

from ground truths to automate fact-checking (e.g., Nickel et al., 2016). However, this approach is known for 

problems including redundant information (Altowim et al., 2014), incorrect timing of (Hoffart et al., 2013) and 

conflicting (Kang & Deng, 2019) facts, unreliable sources (Ye & Skiena, 2019), and data-driven Machine 

Learning (ML) models with little interpretability (i.e. little theoretical explanations for why new information 

may or may not be authentic) (Zhou & Zafarani, 2020).  

  To address the intention problem, current approaches analyse the message’s propagation patterns, 

source credibility, or writing style. Propagation-based methods focus on how fake news spreads in a user 

network by analysing, for example, news cascades (i.e. tree-like structures that directly capture the propagation 

of news articles on a social network (Vosoughi et al., 2018)). Source-based methods examine whether news 

sources create, publish, or share content from reliable writers and publishers (Sitaula et al., 2020), pass spam 

detection algorithms (e.g., see Spirin & Han, 2012), appear on reputation ranking systems such as MediaRank 

(Ye & Skiena, 2019), or exhibit certain user account characteristics in posts, friends, and behaviors (e.g., Ferrara 

et al., 2016; Shao et al., 2018). Propagation and source-based methods highlight several insights: for example, 

compared to true news, fake news spreads further, faster, and more widely (Vosoughi et al., 2018) and is spread 

by more users, attains stronger user-engagement, and circulates in denser networks (echo chambers) (Zhou & 

Zafarani, 2019). However, as these methods are mostly data-driven, there is little theoretical foundation for 

classifying news cascades and sources as genuine or fake.  

Style-based linguistic detection methods use linguistic cues with ML models to classify new 

information as fake or genuine (Feng et al., 2012; Zhou et al., 2020). The selection of features is often driven by 

linguistic theories and shares many theoretical foundations with the linguistic deception detection literature 

but rarely considers empirical evidence related to specific linguistic cues. Yet deceptive writing styles constantly 

evolve (Castelo et al., 2019) and data-driven features that represent the style of fake news in one context may 

not be compatible or interpretable in another context (Vilone & Longo, 2020).  

For our greenwashing detection method, we developed a deviation-based linguistic style approach that 

extends the style-based approaches in three specific ways. First, it avoids the need for ground truth data. 

Second, it uses a multi-label rather than a binary classification, thereby introducing a new method suited to 

detecting ‘non-traditional’ fake news such as greenwashing and addressing a major challenge faced by existing 

detection methods. Third, it selects theoretically and empirically established linguistic cues, making our 

approach is more “explainable” and replicable in different contexts. Thus, it addresses limited research on 

model interpretability by using related theories and domain knowledge to guide greenwashing detection. 
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Table S2. Comparisons of Automatic Deception Detection Methods 

Method Description Automation Tools Authenticity: 

Ground Truth 

Intention: 

Fake News 

Classification 

Explainability 

Knowledge-based Using knowledge graphs to 

automate fact-checking 

Machine Learning, 

Deep Learning 

Ground truth required: 

Manual labeling 

 

Binary (True/False) Data driven 

Source-based Ranking the credibility of 

information (news) sources 

Feature engineering, 

Machine Learning 

Ground truth required: 

Manual labeling 

 

Binary (Credible /Not 

credible) 

Data driven 

Propagation-based Graphing the spread of false 

information (news) 

Graph optimization, 

Deep Learning 

Ground truth required: 

Manual labeling 

 

Binary (True /False) Data driven 

Style-based Mining deceptive intentions 

from language writing styles 

Feature engineering, 

Machine Learning, 

Deep Learning 

Ground truth required: 

Manual labeling or 

manipulation 

 

Binary (True /False) Theory driven 

Deviation-based 

linguistic style  

(our method) 

Mining deceptive intentions 

from language writing styles 

 

Feature Specification, 

Profile Deviation 

No ground truth 

required 

Multi-class (Deception 

patterns) 

Theory and data 

driven 
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S3. Robustness of the Multi-Category Greenwashing Patterns Measure  

We introduced the notion of “greenwashing patterns” to classify tweets into deciles (ten quantile 

splits) of increasing Euclidean distances from the ideal non-greenwashing profile. One concern may be that 

classification into multiple categories may be inconsistent with the more common binary categorization 

(e.g., greenwashed or not) typical in prior research. Therefore, in Table S3, we compare correlational results 

for several ways to classify high and low greenwashing, including two binary splits (Mean Split, Quantile 

Split) and our preferred decile split (Quantile Range) using both normalized and scaled distance measures. 

Our Quantile Range measure correlates highly with the raw Euclidean distance (Pearson = 0.75), Mean Split 

(Pearson = 0.80) and reasonably well with Quantile Split (Pearson = 0.68). Thus, our greenwashing patterns 

measure compares reasonably with binary categorization with the advantage of avoiding strong claims 

about whether an organizational tweet is greenwashed. By measuring degrees of variation, we 

acknowledge the practical difficulty of inferring deception with absolute certainty in organizational 

greenwashing.   

Table S3. Correlations of Different Measures of Greenwashing Patterns  

Item Greenwashing measure* 1 2 3 4 5 6 7 8 

1 Euclidean Distance 1.00        
2 Mean Split  0.71 1.00       
3 Quantile Split 0.77 0.73 1.00      
4 Quantile Range (our measure) 0.75 0.80 0.68 1.00     
5 Scaled Distance 1.00 0.71 0.78 0.76 1.00    
6 Scaled Mean Split  0.70 0.99 0.73 0.80 0.71 1.00   
7 Scaled Quantile Split 0.77 0.73 0.98 0.68 0.78 0.73 1.00  
8 Scaled Quantile Range 0.75 0.80 0.68 1.00 0.76 0.80 0.68 1.00 

 *Key Definitions       

 Euclidean Distance Greenwashing as raw Euclidean distances between normalized (z) scores  

 Scaled Distance Greenwashing as raw Euclidean distances between unitary scaled [0,1] scores 

 Mean Split Greenwashing as mean split of Euclidean distances 

 Quantile Split Greenwashing as 20th quantile split of Euclidean distances 

 
Quantile Range 

Greenwashing as decile quantile range (10th, 20th, …90th) splits of Euclidean 

distances 

 

S4. Validation Approaches for Detecting Greenwashing 

   As described in the paper, our validation tests address the third issue in profile deviation, 

i.e., the predictive power of our method for detecting greenwashing patterns. The classical approach in 

profile deviation is to specify a baseline model to demonstrate that the predictive power of the Euclidean 

distance measure of deviation from the ideal profile is significantly better than a measure calculated as 

deviation from a random profile (Venkatraman, 1989). However, empirical implementation of this test 

tends to vary. For example, Hult et al. (2006) compared performance outcomes of deviation from the ideal 

profile with a non-ideal baseline of profile deviation from ‘‘average performers’’ (cases at the median on 

the performance scale), whereas Vorhies and Morgan (2005) calibrated a non-ideal baseline of profile 

deviation from a random selection of five firms with unknown performance scores. We adopt a different 

approach to be more conservative by using multiple methods (methodological, industry comparison, 

public perception, and expert opinions). Collectively, our multiple validation tests demonstrate that: a) 

profile deviation is replicable with an alternative (clustering) method, b) our greenwashing measure 

distinguishes potentially greener industries from potentially less-green industries, c) our measure relates 
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as expected to public sentiment, and d) a firm’s tweet that scores high on our greenwashing measure 

correlates highly with the likelihood that the tweet will be tagged as greenwashed. We discuss each test in 

detail next. 

For methodological validation, we employ clustering (McQueen, 1967) as an unsupervised 

machine learning approach to test the predictive power of the linguistic cues. The rationale for this validity 

test is to check whether an alternate method will yield similar greenwashing scores as the profile deviation 

method. While both profile deviation and clustering are distance-based methods, the former calculates 

distances of composite linguistic dimension scores from a pre-defined fixed point, whereas the latter 

exploits distances between the linguistic dimension scores themselves. Hence, a clustering solution that is 

valid, stable, robust and yields cluster patterns consistent with our greenwashing patterns will provide 

external validation to the profile deviation model.  

To begin, a clustering tendency test for the presence of meaningful clusters in the data yielded a 

Hopkins statistic of 0.056 which is far below the test value of 0.5. Thus, we reject the null hypothesis that 

the data is uniformly distributed and has no meaningful clusters (Hopkins & Skellam, 1954). Visual 

confirmation of clustering tendency is plotted in a dissimilarity matrix image in Figure S4.1, in which color 

level representing the dissimilarity between observations shows a clear cluster structure in the data. The 

next natural question is to identify the optimal number of clusters. We explored preliminary suggestions 

from seven hierarchical clustering algorithms and summarize results obtained with a universal cut-off 

height of 15 units on their dendrograms in Table S4.1 (e.g., see Figure S4.2 for the cluster dendrogram for 

Ward’s linkage). The cluster quality measures—the cophenetic correlation of original and clustered 

distances between observations—are all above the minimum acceptable value of 0.75 (Kaufman & 

Rousseeuw, 2009; Mather, 1976). Ward Linkage yielded 11 clusters with the best-balanced average cluster 

size.  

 

 
 

Figure S4.1. Dissimilarity Matrix Image of Cluster Tendency* 

*The color level is proportional to the value of the dissimilarity between observations: pure red if dist(xi, xj) = 0  

and pure blue if dist(xi, xj) = 1. Objects belonging to the same cluster are displayed in consecutive order.  

The dissimilarity matrix image confirms the presence of a cluster structure in the data. 
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Table S4.1. Hierarchical Clustering Solutions with Dendrogram Cut-off at h=15 

Item Linkage 

Method 

No. of 

Clusters 

Average 

Cluster Size 

Cophenetic  

Correlation 

1 Single 3 27409 0.8857 

2 Complete 6 13706 0.8590 

3 Average 4 20557 0.9483 

4 Weighted 4 20557 0.8703 

5 Centroid 3 27409 0.9490 

6 Median 4 20557 0.8410 

7 Ward 11 7475 0.7551 

 

 

 
Figure S4.2. Hierarchical Clustering Dendrogram (Ward Linkage) *  

*Zoomed in for clearer visualization (truncated at height=50) 

 

However, hierarchical clustering solutions are notoriously rigid (i.e., once formed, linkages cannot 

be broken). Hence, we use K-means clustering to explore the stability of the clustering solution. With a 

potential solution at K=11 known from hierarchical clustering; we test for the optimal K from 1 to 15 

clusters. We explored the elbow method (Thorndike, 1953), average silhouette method (Kaufman & 

Rousseeuw, 2009) and the gap statistic method (Tibshirani et al., 2001). The well-known elbow method 

suggested 5 clusters, the silhouette method suggested 9 clusters, while the gap statistic method suggests 

either 11 or 12 clusters. Given that the Gap Statistic method is a much more efficient improvement over 

both the elbow and silhouette methods, we proceeded to examine the k=11 versus k=12. We used the 

NbClust functions in R version 4.0.2 (Charrad et al., 2014; Kassambara, 2017) that examine 30 indices to 

choose the best cluster via majority voting. The results suggested an optimal number of 12 clusters, a 
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solution that is close to the ten greenwashing patterns from profile deviation.  

  Next, we validate the cluster solution with three internal measures: cluster cohesion, separation, 

and connectedness. Dunn Index (0.22) and average silhouette width (0.29) all point to acceptable cluster 

compactness or cluster cohesion. Within and between cluster sums of squares further showed good cluster 

separation. Cluster connectedness measures the extent to which items are placed in the same cluster as 

their nearest neighbors in the data space. Silhouette plot and further analysis revealed that only 6% of 

observations were not placed with their nearest neighbors (i.e., not in the right cluster). Given these 

reasonably stable cluster metrics, we finally tested the extent to which cluster assignments correlated with 

profile deviation assignments of observations. For each cluster, we use the resulting mean cluster scores 

for each cue (see Table S4.2 and Figure S4.3) to compute Euclidean distances from our theoretically ideal 

profile. Table S4.3 shows that the raw Euclidean distance scores and quantile range measures for profile 

deviation patterns and cluster memberships correlated highly at Pearson = 0.98 and Pearson = 0.88, 

respectively. This methodological cross-validation presents strong evidence that our greenwashing 

patterns are stable. For comparison to Table 2 in the main paper, Table S4.4 includes the average 

greenwashing scores per cluster. 

 

Table S4.2. Cluster Means on Linguistic Cues 

Cluster No.  
Linguistic Cues 

Quantity Specificity Complexity Diversity Hedging Affect Vividness 

1 13.99 40.41 37.09 12.95 -17.84 -14.48 0.30 

2 5.24 16.37 16.62 4.85 -10.31 -5.44 1.15 

3 8.27 10.50 8.72 8.97 -3.88 -2.28 1.30 

4 3.61 9.60 11.61 3.54 -5.06 -5.02 0.04 

5 2.20 4.75 4.69 1.92 -4.25 -1.92 0.76 

6 0.83 1.77 1.81 0.77 -1.37 -0.78 0.29 

7 -0.11 0.03 0.05 -0.06 0.43 0.14 -1.49 

8 0.09 -0.11 -0.34 0.05 -0.44 0.06 1.23 

9 -0.65 -1.62 -1.67 -0.60 1.10 0.63 0.27 

10 -1.19 -2.79 -2.80 -1.16 1.69 1.09 0.85 

11 -1.16 -2.63 -2.66 -1.10 1.71 1.07 -2.08 

12 -1.17 -2.61 -2.78 -1.14 1.13 1.14 -6.54 
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Figure S4.3. K-Means Cluster Profiles Plot 

 

 

Table S4.3. Correlations between Greenwashing Patterns by Profile 

Deviation (PD) and Clustering 

Item Greenwashing measure 1 2 3 4 

1 PD Euclidean Distance 1.00       

2 PD Quantile Range 0.75 1.00   
3 Cluster Euclidean Distance 0.98 0.73 1.00  
4 Cluster Quantile Range 0.89 0.88 0.91 1.00 

 

 

Table S4.4. Average Greenwashing Score per Cluster 

Cluster No. 

No. of 

Observations 

Average  

Greenwashing Score 

1 1817 73.25 

2 10134 76.66 

3 4381 78.93 

4 1044 80.64 

5 15867 83.34 

6 1145 84.65 

7 5433 85.55 

8 11316 86.57 

9 10112 87.56 

10 9339 88.48 

11 6926 89.84 

12 4712 90.65 

 

The second validation approach assessed the accuracy of our method by distinguishing 

greenwashing by our firms in the oil/gas and auto industries from firms in the environmental management 

industry. The rationale is that our firms face growing institutional pressures to adopt more green practices 

and have higher motivation to communicate green actions through greenwashing. In contrast, firms in the 

environmental management industry are perceived as environmentally proactive (e.g., Henriques & 

Sadorsky, 1999) and have fewer incentives to greenwash their communications. We sampled all firms 

classified under the environmental industry in the Forbes Global 2000 classification and selected those with 

tweets spanning the same period of observation. Next, we measured the level of greenwashing in their 

tweets with the same profile deviation method used for our focal firms. We found, as expected, that green 

tweets from the environmental firms fell in the lowest decile on the quantile range splits, indicating the 

closest distance to the ideal non-greenwashing (truthful) profile1. 

For our third validation test, we examined the extent to which our greenwashing measure 

correlates with public perceptions of firms’ green tweets. Prior studies have examined various metadata 

 
1 To avoid any ramifications of publicly disclosing the greenwashing scores of firms, we only report average greenwashing scores 

for deciles and clusters in the paper. Interested readers can contact the authors to verify individual greenwashing scores for 

firms.   
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about social media posts, such as likes, favorites, retweets, and votes to study consumer engagement in 

greenwashing (Topal et al., 2019), fake online reviews (Zhang et al., 2016), social media virality (Han et al., 

2020), information credibility (Castillo et al., 2011), and mobilization of public sentiment for political 

activism (Theocharis et al., 2015). Based on these studies and given the general climate consciousness or 

virtue signaling in social media, we expect Twitter users to be more likely to endorse green tweets 

perceived as genuine by retweeting, mentioning, or liking them. Although general Twitter users will not 

be adept at spotting greenwashing, their endorsement (or otherwise) of firm’s green tweets serves a proxy 

for public sentiments about the tweet. Thus, perceived greenwashed tweets should be negatively related 

to retweets, favorites, and mentions on Twitter. We aggregated the number of retweets and favorites for 

all tweets and correlated them with our greenwashing measure. We found negative spearman correlations, 

significant for retweets (𝜌 = -0.13, p < 0.01) but not for favorites (𝜌 = -0.06, p = 0.26), with the retweet effect 

showing that higher greenwashing generally had fewer endorsements. Although the correlation size is 

small, the negative direction adds credibility to our greenwashing measure as potentially reflecting public 

sentiments on tweets. Further, this weak correlation is consistent with prior findings that humans are not 

apt at detecting deception (Crilly et al., 2016; George et al., 2013; L. Zhou et al., 2004). One potential 

limitation to using retweet as a validation measure is the possibility that users may retweet to ridicule or 

criticize the content, rather than the common practice of endorsing it. Future research could analyze 

sentiments in user comments accompanying retweets to rule out such cases.  

  Our final validation test examined the extent to which outsiders would agree with our 

greenwashing score for a firm’s green tweet. The rationale for this test is that if a firm’s green 

communication is deceptive and our greenwashing measure adequately labels it so, then those who 

specialize in calling out corporate greenwashing should come to a similar conclusion. Thus, we can expect 

a moderate to high correlation between our greenwashing measure and the likelihood of it being tagged as 

deceptive. Data for this test were scraped from all tweets labeled with the hashtags #greenwashing or 

#greenwash on Twitter from 2009 to 2019, overlapping the period of the study. These two hashtags are the 

established monikers widely used by environmental activists to shine a spotlight on both real and 

perceived instances of greenwashing by firms. Together, they returned over 26,000 posts that were tagged 

as greenwashing (across all topic areas, not just for our two industries). To focus on our study firms, we 

extracted mentions that tagged these firms up to one week following the firm posting of a green tweet. We 

created a binary variable named Tagged which scored firms 1 if their tweets were labeled as greenwashed 

and 0 otherwise. We believe that this tagging is appropriate for our validation because it includes posts by 

many well-known environmental activists, such as Extinction Rebellion and Greenpeace, who are more 

likely than the general public to spot instances of greenwashing on Twitter.  

  We analyzed whether the linguistic cues in Table 1 of the main paper would accurately predict the 

likelihood that a tweet with a high greenwashing score (i.e., high profile deviation) would be labeled with 

greenwashing hashtags in the following week. Using supervised machine learning techniques, we built 

and trained five competing classifiers including logistic regression, random forest, support vector machine 

(SVM), extreme gradient boosting (XGB), and neural net classifiers. The predictor variables include all eight 

linguistic cues and the outcome variable is Tagged (with two unbalanced classes: 1 = 12,665, 0 = 69,562). To 

improve classification accuracy, we used a balanced subsample of 25,000 tweets and a train-test split ratio 

of 70:30 for each classifier. We evaluated the model validation accuracy and F1 score (ability to identify 

more true than false positives) to select the best model. Finally, we calculated the correlation between the 

predicted propensity scores and our profile deviation scores.  

 Model evaluation results are included in Table S4.5 below. While all models had high accuracy 

scores, the Logistic regression classifier yielded the best model, with the highest F1 score indicating a better 

ability to accurately identify instances of tagged greenwashing than any other model. In the final step, the 

correlation between the propensity scores from the Logistic regression model and the profile deviation 
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scores was 0.72 and significant (p = 0.00). Thus, our greenwashing measure correlates highly with the 

likelihood that the firm's communication will be tagged as greenwashed soon after the firm posts a green 

tweet. This result provides additional evidence that our profile deviation method represents a valid 

measure of greenwashing in firms’ tweets. 

In conclusion, while no single validation method on its own is sufficient, the collective results from 

four independent validation methods (i.e., methodological, industry, public perception, and expert 

opinion) provide strong evidence for the validity of our greenwashing measure. 

  

Table S4.5. Classification model evaluation and selection 

No. Model 
Training 

Accuracy 

 

Validation 

Accuracy 

 

F1-Score 

1. Logistic Regression 91.85% 91.33% 

 

95.45% 

 

2. Random Forest 98.63% 79.70% 

 

84.70% 

 

3. XGB 96.73% 85.55% 

 

88.98% 

 

4. SVM 91.44% 76.34% 

 

81.63% 

 

5. Neural Nets 93.56% 86.29% 

 

82.71% 
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Section S5-S7:  Supplementary Materials for Research Question 2 
 

S5. Variables and Sources used in Regressions 

 

Table S5. Variable Definitions 

Variable Definition Data Source  

Greenwashing Euclidean distance from ideal non-deceptive profile on linguistic cues of a 

firm’s green tweet. 

Twitter 

ESG 

Controversies 

Number of environmental, social and governance incidents listed in a firm’s 

controversy report.  

Sustainalytics 

Share Price The daily average stock price of a firm. Bloomberg 

Gross Income A firm’s net sales revenues minus cost of goods sold. Bloomberg 

Return on 

Assets A firm’s ratio of net income per total assets. 

Bloomberg 

Operating 

Income 

A firm’s earnings before interest, taxes, depreciation and amortization, 

adjusted per year. 

Bloomberg 

Revenue A firm’s income generated from normal business operations, adjusted per year Bloomberg 

Profit  A firm’s total revenue minus total expenses, adjusted per year. Bloomberg 
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S6. Descriptive Statistics and Correlations  

 

Table S6.1 Descriptive Statistics 

 Variable N Mean Std. Dev.  Min Max 

 log Share Price 37535 3.45 1.04 0.32 5.94 

 log Greenwashing 37580 4.45 0.03 4.27 4.61 

 log ESG Controversies 22748 1.51 0.98 0.00 3.78 

 Industry (0=Auto, 1=Oil) 34532 0.44 0.50 0.00 1.00 

 Region (0=N.Am, 1=Global) 34532 0.72 0.45 0.00 1.00 

 Size (0=Bottom, 1=Top) 34532 0.68 0.47 0.00 1.00 

 log Gross Income 34352 2.40 1.30 -0.14 4.50 

 log Return on Assets 29592 1.62 0.61 -0.47 3.27 

 log Operating Income 33231 2.58 0.67 0.00 4.28 

 log Profit 34352 5.63 4.05 0.00 11.19 

 log Revenue 34532 8.99 3.34 0.00 13.05 

 

 

Table S6.2 Correlations 

  Variables (1) (2)  (3) (4) (5) (6) (7) (8) (9) (10) (11) 

(1) log Share Price 1.00  

(2) log Greenwashing -0.09 1.00  

(3) log ESG Controversies 0.17 0.11 1.00  

(4) Industry  0.10 -0.07 0.17 1.00  

(5) Region  -0.25 0.07 0.05 -0.33 1.00  

(6) Size  0.40 -0.06 0.36 0.21 -0.16 1.00  

(7) Gross Income 0.20 0.01 -0.08 -0.35 -0.02 0.05 1.00  

(8) log Return on Assets -0.13 -0.01 -0.21 -0.11 -0.06 -0.18 0.18 1.00  

(9) log Operating Income 0.05 0.04 0.03 0.37 -0.07 0.04 -0.02 0.19 1.00  

(10) log Profit 0.38 -0.03 0.08 0.25 -0.48 0.25 0.49 -0.19 -0.01 1.00  

(11) log Revenue 0.17 -0.01 0.19 0.63 -0.40 0.24 -0.37 -0.35 0.22 0.57 1.00 
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S7.  Robustness Tests 

 We include several robustness tests using alternative specifications with: our greenwashing 

measured from clustering (Table S7.1); week-level random effects models for market outcome (Table S7.2); 

and individual effects of greenwashing dimensions (Table S7.3). Overall, these results support the 

robustness of our main results to alternate specifications.  

 

Table S7.1 Greenwashing by Clustering: Daily Financial Market Performance 

 
Dependent Variable: Share Price 

 

Variables Model (1) Model (2) Model (3) Model (4) 

     

Greenwashing (GW)        -0.65**       -0.93** 

             (0.05)    (0.10) 

ESG Controversies (ESGC)        -0.04**    -0.65* 

     (0.00)   (0.26) 

GW x ESGC        0.14* 

              (0.06) 

Industry (0=Auto, 1=Oil)           -0.44            -0.48   -0.76†    -0.82* 

  (0.37)     (0.37)    (0.41)   (0.41) 

Region (0=NA, 1=Global)           -0.66            -0.66           -0.89†   -0.84† 

  (0.41)    (0.38)   (0.47)   (0.48) 

Size (0=B20; 1=T20)      0.90**      0.88*   0.65   0.59 

  (0.34)    (0.35)   (0.40)   (0.40) 

Gross Income    -0.21**      -0.22**  -0.04     -0.06** 

  (0.02)    (0.02)   (0.03)   (0.03) 

Return on Assets            -0.01  -0.01       0.19**       0.19** 

  (0.01)   (0.00)   (0.01)   (0.01) 

Operating Income      0.45**       0.46**       0.27**       0.29** 

  (0.01)   (0.01)   (0.01)   (0.01) 

Profit      0.07**       0.07**      -0.05**     -0.04** 

  (0.01)   (0.01)   (0.01)   (0.01) 

Revenue      0.04**       0.05**       0.13**       0.14** 

  (0.01)   (0.01)   (0.01)   (0.01) 

Constant      1.81**       4.62**       2.19**       6.17** 

  (0.47)   (0.53)   (0.55)   (0.72) 

     

Observations 29,477 29,477 17,435 17,435 

Number of Firms 50 50 42 42 

Random Effects regression estimates with standard errors in parentheses. Firm-day panel. Region NA: North America. 

Greenwashing measured as Cluster Score (see validation with Clustering Method in Section 4). Size T, B: Top & Bottom 

20 rank by market cap (Forbes Global 2000). ** p<0.01, * p<0.05, † p<0.10. 
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 Table S7.2 Greenwashing by Profile Deviation: Weekly Financial Market Performance 

 
Dependent Variable: Share Price 

 

Variables Model (1) Model (2) Model (3) Model (4) 

     

Greenwashing (GW)       -0.46**       -0.79** 

            (0.10)    (0.18) 

ESG Controversies (ESGC)        -0.06**   -0.87† 

     (0.00)   (0.45) 

GW x ESGC       0.18† 

              (0.10) 

Industry (0=Auto, 1=Oil)           -0.40            -0.43   -0.92*    -0.97* 

   (0.37)    (0.37)  (0.40)   (0.41) 

Region (0=NA, 1=Global)           -0.60            -0.60           -0.61 -0.57 

   (0.41)    (0.42)   (0.47)  (0.48) 

Size (0=B20; 1=T20)     0.83*      0.82*  0.44  0.37 

   (0.35)    (0.35)   (0.39)  (0.36) 

Gross Income      -0.26**      -0.26**   -0.09*     -0.12** 

   (0.02)    (0.02)   (0.04)  (0.04) 

Return on Assets       0.12**        0.12**       0.10**      0.10** 

   (0.01)    (0.00)   (0.01)   (0.01) 

Operating Income       0.33**        0.33**       0.30**       0.31** 

   (0.01)    (0.01)   (0.02)   (0.02) 

Profit       0.09**        0.09**   0.00   0.01 

   (0.01)    (0.01)   (0.02)   (0.02) 

Revenue       0.03**        0.04**       0.19**       0.20** 

   (0.01)    (0.01)   (0.02)   (0.02) 

Constant       2.10**        4.09**       1.55**       4.93** 

   (0.48)    (0.64)   (0.56)   (1.00) 

     

Observations 10,484 10,484 6,969 6,969 

Number of Firms 50 50 42 42 

Random Effects regression estimates with standard errors in parentheses. Firm-week panel. Greenwashing measured 

as Profile Deviation Score. Region NA: North America. Size T, B: Top & Bottom 20 rank by market cap (Forbes Global 

2000). ** p<0.01, * p<0.05, † p<0.10. 
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Table S7.3 Individual Effects of Greenwashing Dimensions (continues next page) 

  Dependent Variable = Share Price 

Variables 

Model 

 (1) 

Model 

 (2) 

Model  

(3) 

Model  

(4) 

Model 

(5) 

Model  

(6) 

Model  

(7) 

Model 

(8) 

Model 

(9) 

Model  

(10) 

Model  

(11) 

Model  

(12) 

Model  

(13) 

Model  

(14) 

Model 

 (15) 

                                

ESG Controversy 

(ESGC) 0.50**        1.00** -0.25** 0.61** 2.39** 1.90** -0.47* -2.23** 

 (0.02)        (0.04) (0.08) (0.05) (0.19) (0.78) (0.18) (0.28) 

Quantity  

-

13.37**       -6.16**       

  (0.90)       (1.12)       
Specificity   -2.47**       -2.88**      

   (0.32)       (0.39)      
Complexity    -2.80**       1.21**     

    (0.32)       (0.42)     
Diversity     -3.42**       1.71    

     (1.26)       (1.54)    
Hedging      6.75**       7.12**   

      (1.12)       (1.50)   
Affect       2.34**       -1.03*  

       (0.36)       (0.44)  
Vividness        13.34**       -1.57 

        (1.22)       (1.39) 

Quantity x ESGC         -1.57**       

         (0.12)       
Specificity x ESGC          0.50**      

          (0.06)      
Complexity x ESGC           -0.12**     

           (0.06)     
Diversity x ESGC            -1.70**    

            (0.17)    
Hedging x ESGC             -0.36*   

             (0.20)   
Affect x ESGC              0.37**  
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  Dependent Variable = Share Price 

Variables 

Model 

 (1) 

Model 

 (2) 

Model  

(3) 

Model  

(4) 

Model 

(5) 

Model  

(6) 

Model  

(7) 

Model 

(8) 

Model 

(9) 

Model  

(10) 

Model  

(11) 

Model  

(12) 

Model  

(13) 

Model  

(14) 

Model 

 (15) 

                                

              (0.07)  
Vividness x ESGC               2.05** 

               (0.21) 

Industry (0=Auto, 

1=Oil) -22.30† -22.09† -21.77† -21.45† 

-

21.97† -21.87† -21.96† -20.48 

-

22.44† -22.22† -22.43† -22.26† -22.18† -22.15† -21.38† 

 (12.54) (12.84) (12.91) (12.91) (12.80) (12.91) (12.87) (12.93) (12.23) (12.84) (12.58) (12.61) (12.80) (12.35) (12.07) 

Region (0=NA, 

1=Global) 

-

37.79** 

-

37.63** 

-

37.86** 

-

37.71** 

-

37.91** 

-

37.79** 

-

38.06** -36.85* 

-

37.37** 

-

37.67** 

-

37.85** 

-

37.61** 

-

37.67** 

-

37.76** 

-

37.45** 

 (14.03) (14.36) (14.44) (14.44) (14.32) (14.44) (14.40) (14.46) (13.67) (14.36) (14.07) (14.10) (14.31) (13.81) (13.50) 

Size (0=B20, 1=T20) 14.11 16.08 16.13 16.35 16.14 16.00 16.23 15.37 14.66 13.50 14.25 14.05 13.95 14.57 14.95 

 (11.99) (12.27) (12.34) (12.34) (12.24) (12.34) (12.31) (12.36) (11.69) (12.27) (12.03) (12.05) (12.23) (11.81) (11.54) 

Gross Income -0.23** -0.22** -0.26** -0.27** -0.26** -0.26** -0.26** -0.28** -0.17** -0.23** -0.22** -0.22** -0.23** -0.23** -0.24** 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

Return on Assets 1.85** 1.89** 1.90** 1.90** 1.91** 1.91** 1.90** 1.92** 1.79** 1.83** 1.85** 1.83** 1.85** 1.85** 1.85** 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

Operating Income 0.00** 0.00** 0.00* 0.00* 0.00* 0.00* 0.00* 0.00† 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Profit 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Revenue 0.00** 0.00† 0.00 0.01 0.02 0.03 0.04 0.05 0.00** 0.00** 0.00** 0.00** 0.00** 0.00** 0.00† 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Constant 70.28** 75.35** 75.74** 74.50** 75.36** 45.06** 65.99** 54.09** 70.99** 74.92** 68.97** 67.97** 42.19* 72.74** 71.93** 

  (15.67) (16.04) (16.14) (16.13) (16.05) (16.73) (16.11) (16.24) (15.28) (16.05) (15.73) (15.84) (16.85) (15.47) (15.19) 

                
Observations 34,532 34,532 34,532 34,532 34,532 34,532 34,532 34,532 34,532 34,532 34,532 34,532 34,532 34,532 34,532 

Number of Firms 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 

Random Effects regression estimates with standard errors in parentheses. Firm-day panel. Quantity, Specificity, Complexity, Hedging, Diversity, Affect, and Vividness are the dimensions 

of greenwashing as profile deviation. Region NA: North America. Size T, B: Top & Bottom 20 rank by market cap (Forbes Global 2000). ** p<0.01, * p<0.05, † p<0.10.  
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