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Text S1. Working electrode preparation 

Carbon papers (20 × 20 mm) were firstly soaked into 0.5 M H2SO4 solution for 5 

h to improve their hydrophilicity, and were washed in ultrasonic bath with DI water 

and ethanol for 20 min in sequence to remove impurities. For a specific working 

electrode, 7.5 mg sample (e.g. TiO2@C-W) was added into a solution of 5 mL ethanol 

and 1.5 mL isopropanol containing 7.5 μL Nafion® (5 wt.%) to form a mixture. The 

mixture was ultrasonicated for 10 min to form an ink. The ink was transferred onto 

the pretreated carbon paper on a heating plate using a brush. Aforementioned steps 

were repeated to coat uniform films on both sides of the carbon paper 
  



 

Figure S1. H-type cell for cathodic reduction test 

 
  



0 30 60 90 120 150 180

0.0

0.2

0.4

0.6

0.8

1.0

C
t,F

LO
/C

0,
FL

O

Time (min)

 Air
 O2

 Ar

 

Figure S2. Cathodic reduction test of FLO under Air, O2 and N2 atmospheres (reaction 
conditions: [FLO]0=20 mg L−1, applied bias=0 V, [Na2SO4]=50 mM). 
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Figure S3. Adsorption of FLO by different electrocalysts (reaction conditions: 
[FLO]0=20 mg L−1, applied bias=0 V, [Na2SO4]=50 mM) 
  



 

Figure S4. Effect of molar ratio of BDC: Ti on the electro-reductive degradation 
efficiency of FLO; (A) Ct,FLO/C0,FLO and (B) kobs,FLO of dechlorinating. (reaction 
conditions: [FLO]0=20 mg L−1, applied bias=−1.2 V, [Na2SO4]=50 mM). 
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Figure S5. Effect of temperature calcination of TiO2 and NaBH4 mixtures during 
TiO2@C-W fabrication on the electro-reductive degradation efficiency of FLO 
(reaction conditions: [FLO]0=20 mg L−1, applied bias=−1.2 V, [Na2SO4]=50 mM). 
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Figure S6. Evolution of solution TOC removal (as mineralization efficiency) as a 
function of treatment time in cathodic reduction process for florfenicol (FLO), 
nitrofurazone (NFZ), metronidazole (MNZ) and levofloxacin (LFX) removal by 
TiO2@C-W (reaction conditions: [NFZ]0=[MNZ]0=[FLO]0=20 mg L−1, applied 
bias=−1.2 V, [Na2SO4]=50 mM). 
  



 
Figure S7. Proposed pathways of the cathodic degradation of nitrofurazone (NFZ) and 
metronidazole (MNZ) 



Table S1 Comparison of removal efficiency and kobs with the previous reports 
 
Antibiotic Elimination Technology removal efficiency kobs（min-1） Ref. 
NFZ cathodic reduction with TiO2@C-W as 

electrode 
95% (3h) 0.019 This 

study 
Cathodic degradation 

Graphite fiber brushtwisted by titanium wire 
98.8% (9 h) 0.016  [1] 

Biocathodic degradation 70% （1 h） 0.020 [2] 
Zr(IV)-Based Metal-Organic Frameworks 95%  - [3] 

MNZ cathodic reduction with TiO2@C-W as 
electrode 

93% 0.015 This 

study 
Cathodic degradation 

Graphite fiber brushtwisted by titanium wire 
98% (9 h) 0.013 [1] 

reduction reaction by nanoscale zero-valent 
iron particles 

95% (1.5 h) - [4] 

Oxidatic degradation by granular activated 
carbon 

80% (4 h) 0.023 [5] 

UV/TiO2 photocatalysis 88% (0.5 h) 0.052 [6] 
LFX cathodic reduction with TiO2@C-W as 

electrode 

68% (3 h) 0.006 This 

study 

sonochemical degradation using 

carbon tetrachloride 
99% (15 min) - [7] 

Photocatalytic degradation using highly 

crystalline TiO2 nanoparticles 

90% (2 h) - [8] 

Electrochemical degradation by PbO2 electrode 100% (160 min) 0.028 [9] 
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