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S1 – A more detailed explanation of how the selected classification methods work. 

 

There are many various approaches to the final female/male classifier design. We 

applied three of them, which represent traditional and efficient learning techniques of 

various origins. 

 

Linear Support Vector Machine 

The first of them was the so-called Linear Support Vector Machine (SVM) [1], which is 

a linear classifier that is not based on any statistical theory and supposes the existence 

of outliers (incorrectly classified samples) during classifier learning. This approach 

increases the classifier quality during any cross-validation procedure. The SVM is 

called a linear one because the optimization task can be converted to a Linear 

Programming task [2]. 

The Linear SVM is a very simple but efficient classifier which has output response 𝑦 =signሺ∑ 𝑤௞ு௞ୀ଴ 𝑥௞ሻ, 𝑥଴ = 1. Here, every logarithmic ratio xk has a weight wk which 

represents the polarity and magnitude of xk for k > 0. The primary learning conditions 

are ∑ 𝑤௞𝑥௜,௞𝑦௜∗ ≥ 1 − 𝑠௜, 𝑠௜ ≥ 0ு௞ୀ଴  for 𝑖 = 1, … , 𝑚 where a positive value of 𝑠௜ indicates 

the false classification of i-th sample. Using the parameter 𝐶 > 0 we minimize 

the criterion 𝐹 = ∑ |𝑤௞| + 𝐶 ∑ 𝑠௜௠௜ୀଵு௞ୀଵ  to obtain the optimal weights w୩ including w଴. 

The weight w0 is called bias and only stabilizes the classifier. The parameter C adjusts 

a rate between achieving a low training error (a number of outliers) and the small 

number of involved compounds (H). The high value of the C parameter causes the 

reduction of learning errors but a large number of involved compounds. On the other 

hand, a too low value of the C parameter causes a small number of involved 

compounds but, unfortunately, a high occurrence of the outliers. Finally, 

a compromise value of the C parameter increases the cross-validation accuracy and 

sensitivity; therefore, an ability to generalize the classifier to unknown data. It follows 

from the above that the linear SVM can reduce the initial number of the significant 
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compounds (their logarithmic ratios) to a new value H (in other words, it reduces the 

original H from the WMW test even more). 

Ridge Regression with Thresholding 

The second classification approach is semi-statistical. Ridge Regression (RR) [3] 

followed by thresholding was used to obtain another classifier with the same output 

response as the linear SVM but with another learning strategy driven by residues r୧ = y୧∗ − ∑ w୩x୩ୌ୩ୀ଴ . Using the parameter 𝜇 > 0, which is a ratio estimate of the data 

noise variance and prior weight variance, we minimized a regularized sum of squares 

as G = ∑ r୧ଶ + μ ∑ w୩ଶୌ୩ୀଵ୫୧ୀଵ  to obtain the optimal weights 𝑤௞ including bias 𝑤଴. 

Independently of the original statistical meaning of the μ parameter, this parameter is 

determined experimentally to obtain the maximally possible critical sensitivity of the 

classifier in the case of a cross-validation procedure. However, the number of involved 

compounds (H) remains unchanged. 

Quadratic Discriminant Analysis with Data Whitening 

The third method used is based on two pure statistical approaches. First, the Data 

Whitening [4], as an improvement of Principal Component Analysis (PCA) [5], is used 

for dimensionality reduction, data decorrelation, and standardization. The resulting 

classifier is based on statistical characteristics of the individual classes (females, males) 

and the following a comparison of their probability density functions (PDFs) as is 

usual in discriminant analysis. 

The Quadratic Discriminant Analysis (QDA) [6] supposes a multidimensional normal 

distribution of descriptors (in our case compounds ratios) in every class. The learning 

is based on an estimation of the mean values and the corresponding covariance 

matrices for every class. Using the mean values and the covariance matrices it is 

possible to calculate adequate class densities (PDFs) and compare them for an 

unknown sample, which is classified according to the maximal density value. But the 

QDA is very sensitive to the number of involved compounds (H) and the class 
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degeneracy (hidden correlations). Therefore, we applied PCA to obtain a number D of 

uncorrelated components 𝑃𝐶𝐴ଵ, 𝑃𝐶𝐴ଶ, … , 𝑃𝐶𝐴஽ with adequate eigenvalues 𝜆ଵ, 𝜆ଶ, … , 𝜆஽. Then the Data Whitening provides D new descriptors 𝑐௞ = 𝑃𝐶𝐴௞/𝜆௞ଵ/ଶ 

which enable more efficient QDA. 
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