
Part I. Derivation of the general working equations of the PLL  
Figure S1 represents a schematic of the electrical signals throughout the PLL platform, and will be used to 
derive its general working conditions. 
 

 

Figure S1. Schematic of the electrical signals through the developed PLL platform.  
 

1. Frequency of oscillation of the PLL, 𝜔 

Multiplying the deflection signal by the demodulating cosine reference signal, one gets the signal V1. After 
the LP filter, the (digital) DC signal for the in-phase component of the deflection Q is obtained 
 𝑄 = cos 𝜃 cos 𝜙 + sin 𝜃 sin 𝜙 = cos 𝜃 − 𝜙 ,                                                                                                    (S1) 

 
where 𝜃 = −𝜔𝜏 + 𝜑 , 𝜙 is the imposed phase in the PLL, F  is the magnitude of the force provided by the 
laser, G is a general transduction gain, A and 𝜑  are the amplitude and phase of the cantilever and 𝜏 
represents the total time delay of the signals around the loop, mostly due to the transformation of optical 
energy into mechanical energy.  
Assuming a well-tuned controller, the steady-state of the system will have a null error parameter, or Q = 0, 
which implies the following phase condition 
 cos 𝜃 − 𝜙 = 0 ⇒ − 𝜔𝜏 + 𝜑 − 𝜙 = − + 𝑛𝜋 , with 𝑛 = 0, 1 ,2, …                                                                    (S2) 

 
The phase of the oscillating cantilever is given by the transfer function of the forced and damped harmonic 

oscillator, as 𝜑 = atan −  . The resonance frequency and quality factor in viscous fluids were 

derived by Sader [1] as 𝜔 = 𝜔 1 +  and 𝑄 = 𝜔 . These expressions are introduced in the 

expression for the cantilever phase, to obtain 
 𝜑 = atan −   ,                                                                                                                                  (S3) 

 



with 𝜔 , 𝑚  and 𝑐  the natural frequency in vacuum, total mass and intrinsic damping of the cantilever, 
respectively, and 𝑚  and 𝑐  the added mass and damping coefficients, due to the presence of the 
surrounding fluid. The phase condition of equation (S2) can finally be written as 
 −𝜔𝜏 + atan −   − 𝜙 = − + 𝑛𝜋 , with n = 0, 1, 2, …                                                                (S4) 

 
This equation is numerically solved for 𝜔 as a function of the imposed phase in the system 𝜙.  
 

2. Quadrature Signal, I          

Multiplying the deflection signal by the demodulating sine reference signal, one gets the signal V2. After the 
LP filter, the (digital) DC signal for the quadrature component of the deflection I is obtained 
 𝐼 = cos 𝜃 sin 𝜙 − sin 𝜃 cos 𝜙 = sin 𝜙 − 𝜃 = sin −𝛽 ,                                                                              (S5) 

 
where 𝛽 = −𝜙 + 𝜃. The frequency condition Q = 0 of equation (S2) implies that 
 cos 𝜃 − 𝜙 = 0 ⇒ cos 𝛽 = 0 ⇒ 𝛽 = − + 𝑛𝜋 , with n = 0, 1, 2, … 

 
And therefore, I is given by 
 𝐼 = sin + 𝑛𝜋 = ,  for 𝑛 =  0,  2,  4, …− ,  for 𝑛 =  1,  3,  5, …                                                                                                        (S6) 

 
3. Amplitude of oscillation, 𝐴 

The amplitude of oscillation can be obtained from the transfer function of the forced and damped harmonic 
oscillator, as 
 𝐴 = −   ,                                                                                                                                   (S7) 

 
where 𝑘 = 𝑚 𝜔  is the spring constant of the system. Substituting again the oscillation frequency and quality 

factor in viscous fluids, as derived by Sader [1], 𝜔 = 𝜔 1 +  and 𝑄 = 𝜔 , one gets 

 𝐴 = − 𝜔 + .                                                                                                               (S8) 

         
This amplitude of oscillation can still be normalised, as 
 𝐴 𝜔 = ,                                                                                                            (S9) 

 
with 𝐴 𝜔 = . 



4. Transient response of the PLL 

The frequency of oscillation of the PLL is continuously set by the PI-controller implemented in the dsPIC 
microcontroller, by  
 𝜔 = 𝐾 𝑄 + 𝐾 𝑄𝑑𝑡 = 𝐾 cos 𝜃 − 𝜙 + 𝐾 cos 𝜃 − 𝜙 𝑑𝑡,                                                               (S10) 

 
where the in-phase component 𝑄 is used as the error parameter in the PI-controller, with proportional and 
integral gains of 𝐾  and 𝐾 , respectively. As seen in equation (S10), the transient response of the controller 
depends on the transducer gain and the amplitude of oscillation. 
 
I.1. Added mass and damping in a purely viscous fluid 
The added mass and damping terms, 𝑚  and 𝑐 , of a purely viscous fluid are given by [1], [2] 
 𝑚 𝜔 = 𝜌𝐿𝑊 𝑎 + ,                                                                                                                            (S11) 𝑐 𝜔 = 𝜌𝐿𝑊 𝜔 + ,                                                                                                             (S12) 

 
where 𝜔 is the oscillation frequency of the system, 𝜌 and 𝜂 are the density and viscosity of the fluid, a1 = 
1.0553, a2 = 3.7997, b1 = 3.8018, and b2 = 2.7364 are constants to describe the hydrodynamic function, and 𝐿 and 𝑊 are the length and width of the microcantilever. 
These terms can be substituted in equations (S4) and (S9) to determine the frequency and amplitude of 
oscillation of the cantilever in the PLL, immersed in a purely viscous fluid. 
 
I.2. Added mass and damping in a viscoelastic Maxwell fluid  
A viscoelastic linear fluid is characterised by a complex dynamic modulus given by 𝐺∗ = 𝐺 + 𝑗𝐺′′, defined 
by dividing the applied stress by the total strain of the system. The complex modulus contains an elastic part 𝐺  and a viscous part 𝐺 , with the phase lag between the shear stress and the shear strain given by 𝜑 =arctan . The dynamic modulus 𝐺∗ can be used to define a complex dynamic viscosity 𝜂∗ = 𝜂 + 𝑗𝜂′′, in 

which  𝜂 =  is the viscous part and 𝜂 =  is an elastic viscosity [3], [4]. 

Substituting the viscosity 𝜂 by the complex viscosity 𝜂∗ = 𝜂 + 𝑗𝜂′′ = + 𝑗  in the hydrodynamic function 

[1], [2], one gets [5], [6] 

 𝜏 = 𝑎 + √ 𝐺 − 𝑗𝐺′ + 𝑗 √ 𝐺 − 𝑗𝐺′ − 𝑗 𝐺 + 𝐺′′ .                                                      (S13) 

 

To solve the complex square root, one should use the following identity: √𝑧 = √𝑎 + 𝑖𝑏 = ± | | + 𝑗 | | | | = ± √ |𝑧| + 𝑎 + 𝑗 | | |𝑧| − 𝑎 , 

from where two distinct solutions of equation (S13) are obtained. Both solutions will be presented, but their 
physical validity will be assessed later using a particular case. Separating the real and imaginary parts of the 
hydrodynamic function, as in 𝜏 = 𝜏 + 𝑗𝜏 , one obtains 



𝜏 = 𝑎 + 𝐺 +     ,                                              (S14) 

𝜏 = 𝐺 +     .                    (S15) 

 

Equations (S14) and (S15) can be further simplified by using the following identity: 

√𝑎 ± 𝑏 = + ± − = √ 𝑎 + √𝑎 + 𝑏 ± 𝑎 − √𝑎 + 𝑏 , 

with 𝑎 = √𝐺 + 𝐺   and 𝑏 = 𝐺 , to obtain  

 

𝜏 = 𝑎 + 𝐺 +     ,                    (S16) 

𝜏 = 𝐺 +     .                                        (S17) 

 

Considering the case of a purely Newtonian fluid (no elastic modulus, 𝐺 = 0), equations (S16) and (S17) 
reduce to 

 𝜏 = 1 +   ,                        (S18) 𝜏 = 𝐺 +   ,                       (S19)  

 
where it is already considered that a1 = 1.0 and a2 = b1. The solution of equations (S18) and (S19) must reduce 
to purely viscous case, previously derived by Maali [2] for the hydrodynamic force. This allows to rule out 
the second solution and finally obtain for the real and imaginary parts of the hydrodynamic functions [5], [6] 

 𝜏 = 1 + 𝐺 + √𝐺′ + 𝐺′′ + 𝐺 ,                                  (S20) 𝜏 = 𝐺 + √𝐺′ + 𝐺′′ − 𝐺 .                                   (S21)      

 
The added mass and damping terms depend on the real and imaginary parts of the hydrodynamic function, 
as in [1], [2] 
 𝑚 = 𝜏 ,                                 (S22) 𝑐 = 𝜏 .                              (S23) 

 
Substituting equations (S20) and (S21) into equations (S22) and (S23), allows to finally obtain 
 𝑚 = 𝐶 + 𝐷 + √𝐺′ + 𝐺′′ + 𝐺′,                                    (S24) 



𝑐 = 𝐷 + 𝐵 √𝐺′ + 𝐺′′ − 𝐺′,                                           (S25) 

 

where 𝐵 = √ , 𝐶 =  and 𝐷 = . These terms can be substituted in equations (S4) and (S9) to 

determine the frequency and amplitude of oscillation of the cantilever in the PLL, immersed in a non-
Newtonian viscoelastic fluid. 
 
Part II. Inversion Problem – Extracting 𝑮′ and 𝑮′′ from the measured frequency and amplitude of the 
oscillations in the PLL 
In Part I, it was shown how to use the viscous and elastic modulus to predict the frequency and amplitude of 
oscillation of the microcantilever immersed in a viscoelastic fluid. However, in a PLL platform used for 
viscoelastic characterisation, one should be able to solve the inverse problem, i.e., extracting the viscous and 
elastic modulus of the viscoelastic fluid from the measured values of frequency and amplitude of oscillation 
in the PLL. This requires solving two consecutive steps, discussed below.  
 
II.1. Determining 𝒎𝑨 and 𝒄𝑨 from the oscillation frequency and amplitude of the PLL    

The first step consists of simultaneously calculating the added mass and damping coefficients, 𝑚  and 𝑐 , 
due to the non-Newtonian viscoelastic fluid, from the measured values of frequency and normalised 
amplitude of oscillation.  
The PLL phase and amplitude conditions (assuming a perfectly tuned controller and the steady-state of the 
system) are given by equations (S4) and (S9), here re-written as 
 −   = tan − − 𝑛𝜋 + 𝜙 + 𝜔𝜏 , with n = 0, 1, 2,…                                       (S26) 𝐴 𝑚 𝜔 − 𝜔 − 𝜔 𝑚 + 𝜔 𝑐 + 𝑐 = 𝑚 + 𝑚 .                                     (S27) 

 

The imposed phase in PLL 𝜙 is known, while the oscillation frequency, 𝜔, and normalised amplitude, 𝐴 , 
are measured. Therefore, equations (S26) and (S27) correspond to a system of two equations, which can be 
directly solved to determine 𝑚  and 𝑐 . Defining the variables 𝐸 = −tan − − 𝑛𝜋 + 𝜙 + 𝜔𝜏 ,  𝐹 = 𝑚 𝜔 − 𝜔 ,  𝐺 = 𝐴 𝜔 1 + 𝐸 − 1,  𝐻 = −2𝐹𝐴 𝜔 1 + 𝐸 − 2𝑚 ,  𝐼 = 𝐹 𝐴 1 + 𝐸 − 𝑚 ,  

Equations (S26) and (S27) can be written as 
  = 𝐸,                                          (S28) 𝑚 𝐺 + 𝑚 𝐻 +𝐼 = 0.                             (S29) 
 
The solution is finally given by 
 𝑐 = − 𝐸𝑚 𝜔 − 𝑐 ,                                  (S30)  𝑚 = ± ,                                                (S31)  



 
where 𝑚  and 𝑐  are calculated from the negative solution of equation (S31) for the positive part of the 
variable 𝐸  (𝐸 > 0), and vice-versa. 
 

II.2. Determining 𝑮′ and 𝑮′′ from the calculated 𝒎𝑨 and 𝒄𝑨 

The second step consists of extracting the elastic and viscous modulus, 𝐺′ and 𝐺′′ of the non-Newtonian 
viscoelastic fluid from the previously calculated 𝑚  and 𝑐  terms. These calculations were first presented in 
[5], [6]. Re-writing equations (S24) and (S25) as 
 𝑚 𝜔 = 𝐶𝜔 + 𝐷𝐺′ + 𝐵𝜔 √𝐺′ + 𝐺′′ + 𝐺′,                                  (S32) 𝑐 𝜔 = 𝐷𝐺′′ + 𝐵𝜔 √𝐺′ + 𝐺′′ − 𝐺′,                                          (S33) 
 
Allows to define two new variables 𝐾 = 𝑚 𝜔 − 𝐶𝜔 − 𝐷𝐺′ , 𝐾 = 𝑐 𝜔 − 𝐷𝐺′′.  
Calculating the difference and product between these new variables, one gets, respectively 
 𝐾 − 𝐾 = −2 𝐵𝜔 𝐺 = −2 𝐵𝜔 ,                             (S34) 𝐾 𝐾 = 𝐵𝜔 𝐺 = 𝐵𝜔 ⇒ 𝐾 = ⇒ 𝐾 = .                                 (S35)  
 
Substituting equation (S35) for 𝐾  into equation (S34), one gets an expression that only depends on 𝐾   
 𝐾 − = −2 𝐵𝜔 − .                     (S36) 

 
Equation (S36) can be rearranged to  
 𝐾 + 𝐾 + 𝑚 𝜔 − 𝐶𝜔 − 𝑐 𝜔 = 0,                                (S37) 

 
and solved using the quadratic form, to obtain (positive solution [6]) 
 𝐾 = + 2 𝑚 𝜔 − 𝐶𝜔 + 4 𝑐 𝜔 − − 2 𝑚 𝜔 − 𝐶𝜔 .                                 (S38) 

 
Rearranging further, and substituting the variable 𝐾 = 𝑐 𝜔 − 𝐷𝐺′′, one gets an explicit dependence for 𝐺  
 

𝐺 = − √√ + 2 𝑚 𝜔 − 𝐶𝜔 + 4𝑐 − − 2 𝑚 𝜔 − 𝐶𝜔 .                              (S39) 

 
Finally, substituting equation (S35) into equation (S34), one gets an expression for 𝐺  as function of 𝐺  
 𝐺 = − = − ⇒ 𝐺 = 𝑚 − 𝐶 − .                 (S40) 
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