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Supplementary Materials

1. Accelerometer working principle

The accelerometer can be modeled as a mass-spring-dampen system: if a force is applied to the system, the
outer shell accelerates while the internal mass (i.e., m) tends to remain stationary due to the principle of inertia
and therefore the spring stretches. The stiffness of the spring, (i.e., ket) tends to restore m back to the equilibrium
point, while internal frictional damping (i.e., b) opposes any displacement from the equilibrium point. Such a
model is represented by the following equation:
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In the SCG recording application, the accelerometer is mechanically coupled to the thorax and as the
chest wall surface moves, the mass of the accelerometer moves with an inertial response. Considering x; the
position of m and x, the displacement of the chest wall and of the outer shell of the accelerometer, this
mechanical model can be represented as follows:
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With (x; — x;) iand its first derivative being respectively the relative position and relative motion of the
internal mass of the accelerometer with respect to the outer sensor shell.

2. Gyroscope working principle

MEMS gyroscopes are based on a vibrating mechanical element as a sensing element anchored to a rotating
frame and on an energy transfer between two vibrational modes caused by the apparent acceleration of Coriolis
ac=2v - Q. Indeed, MEMS gyroscopes can be modeled as mass-spring-dampen systems with a mass that moves
along two orthogonal mechanical excitation modes. The in-plane rotation of a rigid body in a three-dimensional
space can be described using Euler angles (¢', 9', {'). Angular velocities w, ,w, and w, generated by rotation
along the x, y, and z axis are related to Euler angles as follows:
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According to (4), estimation of the change in the thorax angle using only a gyroscope implies integral
calculation. In this process, integration of the change in the thorax angle and sensor errors may cause a divergent
output (i.e., sensor drift). For this reason, gyroscopes are preferably used in conjunction with a tri-axial
accelerometer:
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Where vectors v' and w' are the linear acceleration and angular velocity respectively and R is the rotated matrix
defined as:
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Where 9 and 1 denote the change in the angle of the thorax caused by cardiac vibrations in absence of linear
velocity, respiration artefact and rapid body movement.

3. FBG working principle

FBGs are manufactured by photo-etching a permanent periodic variation of the refractive index into the core of
a special type of optical fiber. This modulation, along the beam propagation direction, is realized by exposing
a segment of a few millimeters of the optical fiber to a periodic pattern of an intense ultra-violet (UV) source
(e.g., UV laser). Usually, a germanium-doped silica fiber is used in the manufacture of FBGs. The germanium-
doped fiber is photosensitive, so the refractive index of the core changes with exposure to the UV light and the
amount of change depends on the intensity and duration of the exposure as well as on the photosensitivity of
the fiber.

The back reflected spectrum is centered around the so-called Bragg wavelength, As, which depends on
the effective refractive index of the fiber core and on the grating spatial period, A:

Both the terms in the Bragg condition are sensitive to ¢ and temperature (T), thus the use of a proper
configuration and design allows the estimation of these parameters by monitoring changes of AB. Indeed, when
an FBG is exposed to € and T changes, a variation in A and 7, occurs causing a shift of s (A4g). Differentiating
the Bragg condition in equation 8 and neglecting higher order terms, the AAs is given by:
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Where Az is the change in grating length and AT is the change in grating T. In the mechanical contribution, the
first addend represents the photo-elastic effect and the second one expresses the variation of the geometry,
while in the thermal contribution the first addend is the thermo-optic effect, and the second addend is related
to thermal expansion. Therefore, wavelength sensitivity of FBGs is governed by the elastic, elasto-optic and
thermo-optic properties. Hence, the first term in equation 9 represents the e effect on an optical fiber (AAg™¢<")
and the second term represents the effect of T (AAg***"™). These terms can be expressed as:
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Where S; is the sensitivity to T changes and S, is the sensitivity to ¢ which are determined by means of a
calibration process. Hence, FBG sensors are intrinsically sensitive to both these parameters, but several strain-



temperature discrimination techniques and particular sensor encapsulation packages have enabled to develop
sensors that are selectively sensitive to only one of the two physical quantities. When an FBG sensor is able to
measure a single extrinsic property of a system, it is called a “single parameter” sensor.

During cardiac monitoring applications, the FBG should be highly sensitive to € and the influence of T
should be considered negligible. It can be assumed that during the time span of cardiac monitoring, AT will
never be greater than 0.03 °C causing a maximum 44 = 27 x 10~ pm. For this reason, temperature influence on
Ag can be assumed negligible compared to strain effects on the grating. Under such a hypothesis, the strain
effect on an FBG sensor can be expressed as:
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where P;; and Py, are the silica photo-elastic tensor components, v is the Poisson’s ratio, ¢ is the strain change,
and p, is the stress-optic coefficient. For a germanium-doped core and a wavelength of 1550 nm, the strain
change of a silica fiber is approximately 1.20 pm-(je)-.



