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Supplementary Materials: Non-Invasive Blood Flow Speed
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Starting from the Helmholtz equation:

[∇2 + k2]G1(~r, τ) = −S(~r)
D

(S1)

in which
k = jW(τ) (S2)

Later on we will see that the imaginary number would change the regular bessel function
to a modified bessel function and it’s linear combinations. It’s solution will not exhibit
oscilation behaviour but will be an exponential function.

The total field would be a linear combination of the incident field and the scattered field,
denoted as Gi

1 and Gs
1. Let’s first look at the scattered field.

G1(~r, τ) = Gin
1 (~r, τ) + Gsc

1 (~r, τ) (S3)

1. Scattered Field, Homogeneous Solution

And the scattered field would follow the homogeneous form of equation (S1):

[∇2 + k2]Gsc
1 (~r, τ) = 0 (S4)

As illustrated in Figure S1, we choose the x-axis as the cylinder direction and we assume
the cylinder length is infinite. And equation (S4) becomes a 2d helmholtz equation, and
can be expressed in polar coordinates(y-z plane) utilizing the symmetry property of the
cylinder.

The solution can be obtained using the separation of variable[1]:

Gsc
1 = ψ1(r)ψ2(θ) (S5)

And this r is the radial component under the new coordinate system which is a different
from the~r in the previous equations. The laplacian under polar coordinates can be written
as:

∇2Gsc
1 =

1
r

∂

∂r

(
r

∂Gsc
1

∂r

)
+

1
r2

∂2Gsc
1

∂θ2 (S6)

Substituting back into equation (S4):

1
r

∂

∂r

{
r

∂

∂r
[ψ1(r)ψ2(θ)]

}
+

1
r2

∂2[ψ1(r)ψ2(θ)]

∂θ2 + k2ψ1(r)ψ2(θ) = 0 (S7)

After re-arranging the terms, the above equation can be written as:

r2

ψ1(r)
d2ψ1

dr2 +
r

ψ1(r)
dψ1

dr
+ k2r2 = − 1

ψ2(θ)

d2ψ2(θ)

dθ2 (S8)
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Figure S1. This figure is an illustration of the geometry used for numerical calculation using a plane
illumination from the top surface. The coordinate system in this figure is polar coordinate, the center
r = 0 is located at the center of the blood vessel. The region inside the circle represents the blood
vessel, the area outside the circle represents the tissue which is semi-infinite.As defined previously,
D = 1

3µ′s
is photon diffusivity with unit of meter and µ′s is the reduced scattering coefficient, µa is the

absorption coefficient with unit of m−1 , k and W is wavevector defined in equation (S1) and (S2).
Subscript and superscript of "in" and "out" denotes whether it’s inside the blood vessel or outside of
the blood vessel

Use separation of variable for equation (S8), the LHS is only a function of r and RHS is only
a function of θ. Define a constant m:

1
ψ2(θ)

d2ψ2(θ)

dθ2 = −m2 (S9)

r2

ψ1(r)
d2ψ1

dr2 +
r

ψ1(r)
dψ1

dr
+ k2r2 = m2 (S10)

The solution for equation (S9) is:
ψ2(θ) = ejmθ (S11)

Applying the periodical condition, i.e. ψ2(θ) = ψ2(θ + 2π) . So m will has to be an integer.
Equation (S10) can be written as:

r2 d2ψ1(r)
dr2 + r

dψ1(r)
dr

+ (k2r2 −m2)ψ1(r) = 0 (S12)

The solution to the above equation can be written in the form of Bessel functions:

ψ1(r) = Am Jm(kr) + BmYm(kr) (S13)

In which, Jm and Ym is the Bessel function of the first kind of order m and Bessel function
of the second kind of order m. And Am, Bm are constants depending on the boundary
condition.
Equation (S13) can also be written as the combination of Hankel functions:

ψ1(r) = Cm H(1)
m (kr) + DmH(2)

m (kr) (S14)
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in which, the Hankel functions are a combination of Bessel functions:

H(1)
m (kr) = Jm(kr) + jYm(kr) (S15)

which is called the Hankel function of the first kind of order m.

H(2)
m (kr) = Jm(kr)− jYm(kr) (S16)

which is called the Hankel function of the second kind of order m. And the constants have
the following relation: Am = Cm + Dm, Bm = j(Cm − Dm)
Combine the solution and all the possible values of m, the scattered field can be written as:

Gsc
1 (r, θ, τ) =

m=+∞

∑
m=−∞

ejmθ [Am Jm(kr) + BmYm(kr)] (S17)

Or in the form of Hankel function:

Gsc
1 (r, θ, τ) =

m=+∞

∑
m=−∞

ejmθ [Cm H(1)
m (kr) + DmH(2)

m (kr)] (S18)

The above equation can be simplified due to a physical constraint of the scalar wave
satisfying helmholtz equation proposed by German Physicist Sommerfeld. It basically
means, the scalar wave must radiates its energy to the infinity, not the other way, no
energy may radiate coming from infinity which can be mathematically expressed as the
Sommerfeld Far field condition[2]:

lim
r−→∞

√
r(

∂

∂r
− jk)Gsc

1 = 0 (S19)

The asymptotic expression of the two Hankel functions when the argument (kr) goes to
infinity can be written as [3]:

H(1)
m (kr) =

√
2

πkr
ej(kr− 1

2 mπ− π
4 ) (S20)

H(2)
m (kr) =

√
2

πkr
e−j(kr− 1

2 mπ− π
4 ) (S21)

Using Sommerfeld condition as in equation (S19), with a simple derivative, we can easily
find that the Hankel function of the second kind does not satisfy the Sommerfeld far field
condition. In other words, in equation (S18), coefficient Dm has to be zero.

So, the scattered field can be simplified as:

Gsc
1 (r, θ, τ) =

m=+∞

∑
m=−∞

ejmθ [Cm H(1)
m (kr)] (S22)

Now, since the k inside and outside the cylinder is different: k1 which would represent
the moving scatters and k0 which is the static scatters outside the vessel. Let’s assume the
vessel/cylinder radius is a. So k = k0 when r > a and k = k1 when r < a.
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2. Plane Wave Illumination

The plane wave illumination is assuming an uniform illumination of plane wave on
top of the surface. As light scatters when the photon enters the medium, the source term
would be the un-scattered photon.

We choose the direction of wave propagation as Z-axis. A plane wave can be written as the
following form [4] using the Jacobi–Anger expansion:

eikr cos(θ) =
m=+∞

∑
m=−∞

jm Jm(kr)ejmθ (S1)

S(~r) will be replaced by S0 exp[jkt(d− z)] = S0 exp(jktd) exp(−jktr cos(θ)), in which kt =
jµt, in which µt is the total scattering cross section, d is the depth of the vessel from the
surface of tissue where the plane wave incident from and S0 is the source intensity.
In order to find the inhomogeneous solution, let

Gin
1 (r, θ) = AS0 exp[jkt(d− z)]

= AS0 exp(−µtd) exp(µtz)
(S2)

And A is unknown, substitute the above equation into the following equation(diffusion
equation):

[∇2 + k2]G1(~r, τ) = −S(~r)
D

(S3)

Since it’s the diffusion equation for the outside medium, the above equation can be written
as:

[∇2 − µout
a

Dout
]G1(~r, τ) = − S(~r)

Dout
(S4)

A can be found out to be:
A =

1
µa − µ2

t Dout
(S5)

The inhomogeneous solution can then be written as:

Gin
1 (r, θ) =

S0 exp(−µtd)
µa − µ2

t Dout
exp(µtz)

= B exp(µtz)

= B
m=+∞

∑
m=−∞

jm Jm(−ktr)ejmθ

(S6)

The total solution can be written as:

G1,out(r, θ, τ) =
m=+∞

∑
m=−∞

Bjm Jm(−ktr) + CmH(1)
m (k0r)]ejmθ (S7)

For the field inside the vessel/cylinder, we use equation (S17) instead of the Hankel function.
Immediately, we can see that Bm = 0 as the Bessel function of second kind, Ym diverges
when r approaching 0. So the scattered wave inside the cylinder is:

G1,in(r, θ, τ) =
m=+∞

∑
m=−∞

ejmθ Am Jm(k1r) (S8)
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2.1. Boundary Condition

The boundary condition requires the photon density or the correlation function to
be continuous at the cylinder boundary and also the flux to be continuous normal to the
boundary and it can be expressed as follows[5,6]:

G1,in(a, θ, τ) = G1,out(a, θ, τ) (S9)

And:

Din
∂G1,in(r, θ, τ)

∂r

∣∣∣∣∣
r=a

= Dout
∂G1,out(r, θ, τ)

∂r

∣∣∣∣∣
r=a

(S10)

The above two boundary conditions can be written as:

m=+∞

∑
m=−∞

ejmθ Am Jm(k1a) =
m=+∞

∑
m=−∞

[Bjm Jm(−kta) + Cm H(1)
m (k0a)]ejmθ (S11)

And,

Dink1

m=+∞

∑
m=−∞

ejmθ Am J′m(k1a) = Dout

m=+∞

∑
m=−∞

[−Bkt jm J′m(−kta) + k0Cm H′(1)m (k0a)]ejmθ (S12)

The above relation is valid for all m and θ, and thus, it can be reduced to:

Am Jm(k1a) = Bjm Jm(−kta) + Cm H(1)
m (k0a) (S13)

Dink1 Am J′m(k1a) = −DoutBkt jm J′m(−kta) + Doutk0CmH′(1)m (k0a) (S14)

From the above two equations, Am and Cm can be solved as:

Am = Bjm
Doutk0 Jm(−kta)H′(1)m (k0a) + Doutkt J′m(−kta)H(1)

m (k0a)

Doutk0 Jm(k1a)H′(1)m (k0a)− Dink1 J′m(k1a)H(1)
m (k0a)

(S15)

Cm = Bjm
Dink1 J′m(k1a)Jm(−kta) + Doutkt Jm(k1a)J′m(−kta)

Doutk0 Jm(k1a)H′(1)m (k0a)− Dink1 J′m(k1a)H(1)
m (k0a)

(S16)

For our interest, since the term of the incident field is not τ dependent, we can only look at
the the scattered field outside the cylinder:

Gs
1,out(r, θ, τ) =

m=+∞

∑
m=−∞

CmH(1)
m (k0r)ejmθ (S17)

Substitute in Cm:

Gs
1,out(r, θ, τ) =

m=+∞

∑
m=−∞

Bjm Dink1 J′m(k1a)Jm(−kta) + Doutkt Jm(k1a)J′m(−kta)

Doutk0 Jm(k1a)H′(1)m (k0a)− Dink1 J′m(k1a)H(1)
m (k0a)

H(1)
m (k0r)ejmθ

(S18)

2.2. Solution Simplification

The above equation can be simplified using the following recurrence relation:

f−n(x) = (−1)n fn(x) (S19)
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Rewrite equation (S7):

Gs
1,out(r, θ, τ) =

m=+∞

∑
m=−∞

Bjm Dink1 J′m(k1a)Jm(−kta) + Doutkt Jm(k1a)J′m(−kta)

Doutk0 Jm(k1a)H′(1)m (k0a)− Dink1 J′m(k1a)H(1)
m (k0a)

H(1)
m (k0r)ejmθ

= B
Dink1 J′0(k1a)J0(−kta) + Doutkt J0(k1a)J′0(−kta)

Doutk0 J0(k1a)H′(1)0 (k0a)− Dink1 J′0(k1a)H(1)
0 (k0a)

H(1)
0 (k0r)

+ B
m=+∞

∑
m=1

jm Dink1 J′m(k1a)Jm(−kta) + Doutkt Jm(k1a)J′m(−kta)

Doutk0 Jm(k1a)H′(1)m (k0a)− Dink1 J′m(k1a)H(1)
m (k0a)

H(1)
m (k0r)

[ejmθ + (−1)me−jmθ ]

(S20)

The derivative can be replaced by the reccurence relation as follows:

f ′m(x) =
m
x

fm(x)− fm+1(x) (S21)

In which, the function f could be Jm(x), H(1)
m (x)

In particular, when m = 0:
f ′0(x) = − f1(x) (S22)

equation (S20) can then be written as:

Gs
1,out(r, θ, τ)

B
=

Dink1 J′0(k1a)J0(−kta) + Doutkt J0(k1a)J′0(−kta)

Doutk0 J0(k1a)H′(1)0 (k0a)− Dink1 J′0(k1a)H(1)
0 (k0a)

H(1)
0 (k0r)

+
m=+∞

∑
m=1

jm Dink1 J′m(k1a)Jm(−kta) + Doutkt Jm(k1a)J′m(−kta)

Doutk0 Jm(k1a)H′(1)m (k0a)− Dink1 J′m(k1a)H(1)
m (k0a)

H(1)
m (k0r)

[ejmθ + (−1)me−jmθ ]

=
−Dink1 J1(k1a)J0(−kta)− Doutkt J0(k1a)J1(−kta)

−Doutk0 J0(k1a)H(1)
1 (k0a) + Dink1 J1(k1a)H(1)

0 (k0a)
H(1)

0 (k0r)

+
m=+∞

∑
m=1

jm
Dink1[

m
k1a Jm(k1a)− Jm+1(k1a)]Jm(k0a) + Doutkt Jm(k1a)[ m

−kta Jm(−kta)− Jm+1(−kta)]

Doutk0 Jm(k1a)[ m
k0a H(1)

m (k0a)− H(1)
m+1(k0a)]− Dink1[

m
k1a Jm(k1a)− Jm+1(k1a)]H(1)

m (k0a)

H(1)
m (k0r)[ejmθ + (−1)me−jmθ ]

(S23)

From the above equation, we can see that only the zeroth order and even order will be
non-zero. Also, due to the small value of the argument, after computing the remaining
even series, the 2nd order will already be 5-6 order magnitude lower than the zeroth order.
So In the remaining part, we will only retain the zeroth order.
k0 and k1 are pure imaginary, and k0 = jW0, and k1 = jW1(τ), we will need the following
modified bessel function which would show no oscillations. Again, I changed the upper
case K to W to avoid confusion between modified bessel function of the second kind.

Jm(jx) = jm Im(x) (S24)
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and:
H(1)

m (jx) =
2
π

j−m−1Km(x) (S25)

The zeroth order term can be then written as:

Dink1 J′0(k1a)J0(−kta) + Doutkt J0(k1a)J′0(−kta)

Doutk0 J0(k1a)H′(1)0 (k0a)− Dink1 J′0(k1a)H(1)
0 (k0a)

H(1)
0 (k0r)

=
−Dink1 J1(k1a)J0(−kta)− Doutkt J0(k1a)J1(−kta)

−Doutk0 J0(k1a)H(1)
1 (k0a) + Dink1 J1(k1a)H(1)

0 (k0a)
H(1)

0 (k0r)

=
DinW1 I1(W1a)I0(−µta) + Doutµt I0(W1a)I1(−µta)
−DoutW0 I0(W1a)K1(W0a)− DinW1 I1(W1a)K0(W0a)

K0(W0r)

(S26)

So the scattered correlation function containing only the zeroth order will be:

Gs
1,out(r, θ, τ) = B

DinW1 I1(W1a)I0(−µta) + Doutµt I0(W1a)I1(−µta)
−DoutW0 I0(W1a)K1(W0a)− DinW1 I1(W1a)K0(W0a)

K0(W0r) (S27)

The total measured field will be:

G1,out(r, θ, τ) = B exp(µtz)+ B
DinW1 I1(W1a)I0(−µta) + Doutµt I0(W1a)I1(−µta)
−DoutW0 I0(W1a)K1(W0a)− DinW1 I1(W1a)K0(W0a)

K0(W0r)

(S28)

We can make one approximation to simplify the above equation, in the numerator, typically,
the first term will be order magnitude larger than the second term. Therefore, in order to
understand the underlining physics better, we will drop the second term and the above
equation becomes:

G1,out(r, θ, τ) = B exp(µtz) + B
DinW1 I1(W1a)I0(−µta)

−DoutW0 I0(W1a)K1(W0a)− DinW1 I1(W1a)K0(W0a)
K0(W0r)

= B exp(µtz) + B
Din I0(−µta)

−Dout
W0 I0(W1a)
W1 I1(W1a)K1(W0a)− DinK0(W0a)

K0(W0r)

≈ B exp(µtz)− B
Din I0(−µta)

Dout
1

W1a + DinK0(W0a)
K0(W0r)

=
S0

µa − µ2
t Dout

[
1− exp(−µtd)Din I0(−µta)

Dout
1

W1a + DinK0(W0a)
K0(W0r)

]
(S29)

In which,

W1(τ) =

√
1

Din
[µin

a +
1
3

µ′sk2
λ〈∆r2(τ)〉] (S30)

W0 =

√
µout

a
Dout

(S31)

For motion caused by convective flow, the above equation could be rewritten as:

W1(τ) =

√
1

Din
[µin

a +
1
3

µ′sk2
λV2τ2] =

√
c + bτ2 (S32)

https://doi.org/10.3390/s22030897


Sensors 2022, 22, 897. https://doi.org/10.3390/s22030897 S8 of S8

Define the following τ independent function to simplify the equation

f1 = exp(−µtd)Din I0(−µta)K0(W0r) (S33)

f2 = DinK0(W0a) (S34)

Then, the normalized correlation function can be written as:

g1(r, θ, τ) =
G1,out(r, θ, τ)

G1,out(r, θ, 0)
=

1− f1
Dout

W1(τ)a + f2

1− f1
Dout

W1(τ=0)a + f2

(S35)

The above equation can be written in the form of:

g1(r, a, θ, τ) =
1− g1(r, a, θ, ∞)

1 + τ/T
+ g1(r, a, θ, ∞) (S36)

It can be found out that:

g1(r, a, θ, ∞) =

[
1− f1

f2

][
1− f1

Dout

a

√
µin

a
Din

+ f2

]−1

(S37)

TF =
τ(a
√

c f2 + Dout)

a f2(
√

bτ2 + c−
√

c)

≈ (a
√

c f2 + Dout)

a f2
√

b

≈
√

c
b

=
1
V

√
3µin

a

µin
s k2

λ

(S38)

1
TF
≈ Vkλ

√
µin

s
3µin

a
(S39)

And kλ is the wave vector value at wavelength λ.
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