
remote sensing

Article

Training Methods of Multi-Label Prediction Classifiers for
Hyperspectral Remote Sensing Images

Salma Haidar 1,2,∗, , and José Oramas 1

1 Department of Computer Science, University of Antwerp, imec-IDLab, Sint-Pietersvliet 7,

 2000 Antwerpen, Belgium
2 Microtechnix BV, Anthonis de Jonghestraat 14a, 9100 Sint Niklas, Belgium
* Correspondence: salma.haidar@uantwerpen.be

1. Introduction
In this document, we introduce additional details and information about the work we conducted

to facilitate the replication of the two-component network we designed and the training schemes we
explored. In Section 2 we introduce all hyperparameters tuned for each scheme under the multi-label
as well as the single-label classification task. In Section 3 we add the relevant hyperparameters we
used to train the two methods from the literature that we reproduced and trained using the patches
datasets we sampled. In Section 4, we provide insights into the inference processing time of our
training schemes.

2. Hyperparameters for each training scheme
In this section, we present the relevant hyperparameters selected for training the network under

each scheme we proposed. We selected the hyperparameters that generated the highest performance
across the three schemes. Sections 2.1 and 2.2 relate to experiments under Sections (4.1) and (4.3)
of the original paper, respectively. In them, We provide information that will allow reproducing
the results achieved under the mentioned sections. Furthermore, under Section 2.3 we provide the
mathematical representation of the evaluation metrics used in the multi-label classification context.

2.1. Multi-Label Classification: Performance Across Training Schemes

In this experiment we trained the multi-label classifier under the the three training schemes,
Iterative, Joint, Cascade, using multi-labeled patches. We sampled those patches under the multi-
label sampling approach as defined under Section (3.4) in the original paper. Table 1 presents the
hyperparamters used for performing the experiment in Section 4.1. Those hyperparameters were
used to train the two-component network for multi-label classification task following the three
schemes, on patches sampled from PaviaU dataset. Table 2 presents the hyperparamters used for
performing the experiment in Section (4.1) to train the two-component network for multi-label
classification task under the three schemes, however using patches sampled from Salinas dataset.

Remote Sens. 2023, 1, 0. https://doi.org/10.3390/rs1010000 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/article/10.3390/rs1010000?type=check_update&version=1
https://creativecommons.org/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-4578-8877
https://orcid.org/0000-0002-8607-5067
https://doi.org/10.3390/rs1010000
https://www.mdpi.com/journal/remotesensing

Remote Sens. 2023, 1, 0 2 of 4

Table S1. Multi-label classification: Hyperparameters adopted for the three training schemes using multi-
labeled patches sampled from PaviaU dataset.

Parameter Iterative Joint Cascadet

Batch size 200 200 200
Epochs-AE 95 − 95
Epochs-Clf 200 200 200

Iterative Epochs 20 NA NA
Lr-AE 1e−2 1e−2 1e−2

Lr-Clf 1e−2 1e−2 1e−2

Lr-step_size AE 10 15 15
Lr-step_size Clf 15 15 15
Lr-schedulerγ 0.9 0.9 0.9
dropout _AE 0.3 0.3 0.3
dropout_Cl f 0.6 0.6 0.6

L2-Regularization 0.0001 0.0001 0.0001

Table S2. Multi-label classification: Hyperparameters adopted for the three training schemes using multi-
labeled patches sampled from Salinas dataset.

Parameter Iterative Joint Cascade

Batch size 130 130 130
Epochs-AE 95 − 95
Epochs-Clf 200 200 240

Iterative Epochs 20 NA NA
Lr-AE 1e−2 1e−2 1e−2

Lr-Clf 1e−2 1e−3 1e−5

Lr-step_size AE 10 20 15
Lr-step_size Clf 15 20 15
Lr-scheduler γ 0.9 0.9 0.9
Dropout_Cl f 0.6 0.6 0.6

L2-Regularization 0.0001 0.0001 0.0001

2.2. Single-Label Classification: Performance Across Training Schemes

Under this experiment, we trained the two-component network for the single-label classification
task. For that purpose, we utilized single labeled patches sampled under the Single label sampling
approach. Table 3 and Table 4 provide a summary of the hyperparameters tuned for the highest
performance for each of the three training schemes, Iterative, Joint, Cascade.

Table S3. Single-label classification: Hyperparameters adopted for each training scheme using patches
sampled from PaviaU dataset.

Parameter Iterative Joint Cascade

Batch size 240 164 100
Epochs-AE 95 − 95
Epochs-Clf 260 200 240

Iterative Epochs 20 NA NA
Lr-AE 1e−2 1e−2 1e−2

Lr-Clf 1e−3 1e−3 1e−5

Lr-step_size AE 10 20 15
Lr-step_size Clf 10 20 15
Lr-scheduler γ 0.9 0.9 0.9
Dropout_Cl f 0.6 0.6 0.6

L2-Regularization 0.0009 0.001 0.0001

Remote Sens. 2023, 1, 0 3 of 4

Table S4. Single-label classification: Hyperparameters adopted for each training scheme using patches
sampled from Salinas dataset.

Parameter Iterative Joint Cascade

Batch size 240 200 200
Epochs-AE 95 − 95
Epochs-Clf 200 200 200

Iterative Epochs 20 NA NA
Lr-AE 1e−3 1e−3 1e−3

Lr-Clf 1e−3 1e−3 1e−3

Lr-step_size AE 10 10 10
Lr-step_size Clf 10 10 10
Lr-scheduler γ 0.9 0.9 0.9

Dropout_Classi f ier 0.6 0.6 0.6
L2-Regularization 0.0009 0.0007 0.0009

2.3. Multi-label Classification: Evaluation Metrics.

The equations below define the evaluation metrics we calculated to evaluate the performance
of the three training schemes, Iterative, Joint, Cascade within the multi-label classification task. For
that we adopted the measures used in [44].

Hamming− Loss =
1

n, L

n

∑
i=1

L

∑
j=1

I(yj
i 6= ŷi

j)

Accuracy =
1
n

n

∑
i=1

|yi ∩ ŷi|
|yi ∪ ŷi|

Precision =
1
n

n

∑
i=1

|yi ∩ ŷi|
|yi|

Recall =
1
n

n

∑
i=1

|yi ∩ ŷi|
|ŷi|

3. Comparison with existing work
We selected two relevant methods in the literature with the purpose of evaluating their perfor-

mance, on the patches dataset we generated. Hence, we reproduced the same architecture of the
two methods however, the training process takes into consideration the shape of our patches dataset.
Since the new data differs from the original one used to train those those methods, we had to tune
the hyperparameters to achieve a good results on our dataset.

3.1. Patches dataset of densely sampled pixels with neighbourhood

In the section we present the hyperparameters we used to train the method reproduced from
[36]. As mentioned in the original paper, we reproduced the same architecture, however, due to lack
of complete details of implementation we fine-tuned our own hyperparameters to train this
network using our patches datasets from from PaviaU and Salinas. Table 5 presents the details.

Table S5. Hyperparameters for training the method developed by [36].

Parameter PaviaU Salinas

Batch size 100 164
Epochs 200 200

Lr 1e−3 1e−3

Lr-Scheduler StepLR ReduceLROnPlateau
Lr-step/patience 20 5

γ/factor 0.9 0.9
Weight_decay 0.09 0.09

Remote Sens. 2023, 1, 0 4 of 4

3.2. Joint training using small sized dataset

In the section we present the hyperparamerts we used to train the method reproduced from [23].
The purpose was to reproduce their architecture and train it using the patches datasets we sampled.
Although in their paper they do not test their method using Salinas datasets, however, we chose
to perform an experiment using patches sampled from Salinas dataset since aim is to test the
performance of such method on the data that we sampled and used to train our two-component
network.

Table S6. Hyperparameters for training the method developed by [23].

Parameter PaviaU Salinas

Batch size 100 100
Epochs 200 200

Lr 1e−2 1e−2

Lr-step 10 20
γ 0.9 0.9

L2-Regularization 0.0001 0.0001

4. Time cost analysis
Table 7 and Table 8 provide details on the average inference time incurred for the processing

of each example (patch). They cover the computation time of the model produced by each training
scheme when applied to our test dataset under both PaviaU and Salinas datasets and for the two
tasks: multi-label and single-label prediction.

Table S7. Inference Time (Average ± Standard Deviation) in Milliseconds for the three training schemes on
the PaviaU and Salinas test datasets for the Multi-label Classification task

Iterative Joint Cascade

PaviaU 1.199± 0.416 1.633± 0.512 1.505± 0.659

Salinas 1.273± 0.482 1.262± 0.428 0.930± 0.262

Table S8. Inference Time (Average ± Standard Deviation) in Milliseconds for the three training schemes on
the PaviaU and Salinas test datasets for the Single-label Classification task

Iterative Joint Cascade

PaviaU 0.520± 0.506 0.778± 0.451 0.642± 0.484

Salinas 0.532± 0.521 0.817± 0.456 0.557± 0.498

The processing times for each task and dataset, as detailed in the two tables above, highlight
notable trends. In both datasets, inference times for multi-label tasks are consistently longer
than those for single-label tasks. This suggests that multi-label tasks are more computationally
demanding, likely due to their more complex decision boundaries and a greater number of output
classes. Additionally, variations in the datasets, particularly in the number of classes they contain,
further contribute to the increased complexity observed in multi-label predictions. In a multi-label
classification problem with more classes, there will be more operations involved, leading to longer
computation times. In conclusion, computational demands differ between training schemes and
task types, with multi-label tasks requiring more time across both datasets. The standard deviation
suggests that some training schemes are more consistent in their inference times than others. These
conclusions highlight the importance of considering both the nature of the classification task (multi-
label vs. single-label) and the characteristics of the dataset in terms of the number of classes to
output when selecting a training scheme for hyperspectral image classification.

	Introduction
	Hyperparameters for each training scheme
	Multi-Label Classification: Performance Across Training Schemes
	Single-Label Classification: Performance Across Training Schemes
	Multi-label Classification: Evaluation Metrics.

	Comparison with existing work
	Patches dataset of densely sampled pixels with neighbourhood
	Joint training using small sized dataset

	Time cost analysis

