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S1. The autogeoi-stacking method 

As a new GeoAI technique, the autogeoi-stacking method is based on automated feature 
engineering (abbreviated as autofeat) and stacking approaches with tuned hyperparameters 
[1]. Compared with the baseline models (e.g., Random Forest), the three parts improved by 
8%, wherein the autofeat, stacking, and hyperparameter tuning resulted in 2%, 3%, and 3%, 
respectively. The other parts will be introduced successively in the following sections.  

Firstly, autofeat can enhance the information of the dataset in machine learning and thus 
is an essential part of automated machine learning (AutoML) [2–4]. The approach usually 
contains two parts: automatic feature synthesis and automatic feature selection. The first part 
will create features automatically from a candidate dataset based on multiple mathematic 
operations, such as logarithmic, sine, and multiplication (from n features to n+m features), 
and the second part will select several optimal ones from them (from n+m features to n+m-j 
features). This study implements this method using the autofeat library (version 2.0.10) in 
Python. 

Secondly, the stacking method is one of the ensemble learning methods (e.g., boosting, 
bagging) that integrates the results of different models. It is concerned with combining 
multiple outputs by using different machine learning algorithms (L1, …, LN) on the same 
dataset. In the first phase, a set of base-level outputs (O1, …, ON) is generated through 
different learners (L1, …, LN). In the second phase, a second-level algorithm (also called 
meta-learner) that combines the outputs of the base-level methods is used [5]. To obtain 
superior accuracy, the base-level learners should perform well, and the diversity of these 
learners should be as high as possible. In this study, the stacking method comprises seven 
tree-based models, including random forest, extremely randomized trees, gradient boosting 
decision tree, extreme gradient boosting, light gradient boosting machine, histogram-based 
gradient boosting, and Catboost.  

Most state-of-the-art machine learning methods need to be tailored to specific tasks by 
selecting an appropriate set of hyperparameters. In the example of random forests, the 
number of estimators, the number of features per estimator, or the minimal number of 
samples per leaf have to be tuned. The typical procedure to tune hyper-parameter sets is as 



follows: The dataset is split into a training, a validation, and a test set. Different 
hyperparameter sets are trained on the training data and tested on the validation data. The 
best-performing model is used as the final model, retrained on the training and validation 
sets, and tested on the test set. In this study, the hyperparameters of machine learning 
methods are tuned using the Optuna library (version 2.9.1) in Python. The optimized 
parameters and value ranges can be found in our previous work [1].  

S2. Long-term gap-free high-resolution air pollutant 

The Long-term Gap-free High-resolution Air Pollutants concentration dataset 
(abbreviated as LGHAP) is of great significance for environmental management and earth 
system science analysis [6]. The current release of the LGHAP aerosol dataset (LGHAP.v1) 
provides a 21-year-long (2000-2020) AOD product with a daily 1-km resolution that covers 
Chinaʹs land area and is free of gaps.  

This dataset was generated using a seamless integration of tensor flow-based 
multimodal data fusion and ensemble learning-based knowledge transfer in statistical data 
mining. The proposed method involved transforming a set of data tensors, including AOD 
and other related datasets, such as air pollutant concentrations and atmospheric visibility, 
acquired from diverse sensors or platforms through integrative efforts of spatial pattern 
recognition.  

The daily resolution AOD, PM2.5, and PM10 datasets are publicly available at 
https://doi.org/10.5281/zenodo.5652257, https://doi.org/10.5281/zenodo.5652265, and 
https://doi.org/10.5281/zenodo.5652263, respectively. Monthly and annual datasets can be 
acquired from https://doi.org/10.5281/zenodo.5655797 and 
https://doi.org/10.5281/zenodo.5655807, respectively. The daily AOD data agrees with the 
Aerosol Robotic Network (AERONET) with a correlation coefficient (R) of 0.91 and RMSE 
equaling 0.21. Meanwhile, PM2.5 and PM10 estimations also agreed well with ground 
measurements, with R values of 0.95 and 0.94 and root mean squared error (RMSE) values of 
12.03 and 19.56 µg/m3. 

S3. Landscan population 

In this paper, we utilized the LandscanTM High-Resolution Global Population Dataset  
to represent the population of the Beijing–Tianjin–Hebei (BTH) region in 2018.  

This dataset, which Oak Ridge National Laboratory developed, provides an ambient 
(average over 24 h) global population distribution at approximately 1 km spatial resolution 
by modeling population distribution with the best available demographic and geographic 
data and remote sensing imagery analysis techniques [7].  

S4. Population-weighted exposure 

Population-weighted exposure (PWE) is a method to estimate the average exposure level 
of a population to air pollutants [8,9]. It is calculated by multiplying the population size and 
the pollutant concentration in different areas and dividing it by the total population. This 
metric can better reflect the actual exposure level of people because it gives more weight to 
the areas where more people live. The formula of PWE is depicted below: 𝑃𝑊𝐸 = ∑ 𝑃 ⋅ 𝐶                      𝑆1 . 



In Equation (S1), i represents each grid in the study region. Pi and Ci are the population 
and PM2.5 concentrations at grid i, respectively. Moreover, P indicates the total population of 
the study region. 

S5. Regional exposure risk (RER) 

The regional exposure risk (RER) of air pollution refers to the time when the air pollutant 
concentration exceeds the limitation in a region, which reflects the length or proportion of 
time people in this region are exposed to air pollution. The exceedance frequency was used to 
estimate the annual and seasonal RER of PM2.5, and the calculation formula is: RER =                  （S2）, 

where RERj is the RER of PM2.5 in grid j, Cj is the PM2.5 concentration in grid j, and S is the 
restrictions of annual (35 µg/m3) and daily PM2.5 (75 µg/m3) concentrations of GB 3095-2012 
(see Table S2). The annual and seasonal RERs were calculated based on the annual PM2.5 
concentration and daily PM2.5 concentration, respectively. n represents the time span, which is 
years for annual RER and days of each season for seasonal RER. The value of RER ranges 
from 0 to 1. A value of 0 indicates that there is no event exceeding the pollution standard of 
the restriction, while the larger the value of RER is, the greater the proportion of pollution 
events, and a value of 1 means that the PM2.5 concentration exceeds the standard of GB 3095-
2012 throughout the whole period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S1. Populations of each subregion of the BTH region (the unit of population is ten thousand people). 

 0-14  15-64 >65 Overall 

Beijing 226.4 1706.7 237.6 2170.7 

Tianjin 158.65 1240.55 157.67 1556.87 

Hebei 1402.39 5271.18 845.95 7519.52 

 

Table S2.  Summary of datasets and sources used in this study. 

 

 

 

Categories Content Unit Spatial resolution Data Source 
Ground Truth PM2.5 µg/m3 Point CNEMC 

Satellite 
Retrieval 

PM2.5 µg/m3 0.05° x 0.05° CHAP 

Meteorological 
 

10m u-component of wind 
10m v-component of wind 
100mu-component of wind 
100m v-component of wind 
2m temperature 
2m dewpoint temperature 
Relative humidity 
Surface pressure 
Boundary-layer height 
Total precipitation 
K Index 

m/s 
- 
- 
- 
K 
- 
% 
Pa 
m 
- 
K 

0.25° x 0.25° 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

ERA5 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

Aerosols 
 

PM2.5 
Black carbon aerosol 
Organic carbon aerosol 
Dust aerosol 
Sulfate aerosol 
Sea salt aerosol  
Carbon monoxide  
Ozone 

µg/m3 
- 
- 
- 
- 
- 
- 
- 

0.5° x 0.625° 
- 
- 
- 
- 
- 
0.136° x0.136° 
- 

MERRA2 
- 
- 
- 
- 
- 
CAQRA 
- 

Topographic Surface elevation m 90m SRTM 



Table S3. National ambient air quality of annual and 24-hour mean PM2.5 concentration.  

 Level 1 Level 2 
Annual  15 35 
24-h  35 75 

 

Table S4. Comparison of generated data in this study: China High Air Pollutant (CHAP), LGHAP, and 

the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2). From left to 

right in the table below, the sub-titles are spatial and temporal resolutions, pairs of images, gap-free (yes 

or no), coverage ratios of available samples, and annual mean values of these PM2.5 datasets. 

 

Table S5. Summary of mean values of each subregion across the BTH region during each hour. 

City Mean City Mean 

Baoding 53.26 Langfang 54.53 

Beijing 44.19 Qinhuangdao 43.13 

Cangzhou 55.54 Shijiazhuang 60.19 

Chengde 29.06 Tangshan 49.64 

Handan 64.93 Tianjin 52.71 

Hengshui 58.62 Xingtai 62.39 

Zhangjiakou 29.07 BTH 44.97 

 

 

 

 

 

 Spatial  Temporal  Pairs Gap-free Coverage ratios Annual mean 

This study 0.05° x 0.05° Hourly 8760 Yes 100% 44.97±14.19 

CHAP - Hourly 3998 No 32.62% 43.91±12.94 

LGHAP 
MERRA-2 

0.5° x 0.625° 
0.5° x 0.625° 

Daily 
Hourly 

365 
8760 

Yes 
Yes 

100% 
100% 

43.67±16.59 
33.19±12.30 



Table S6. Summary of comparison with relevant studies. Bold indicates the value with the best metric (R2 

and RMSE). 

 

1 MI: multiple imputation 

2 LME: linear mixed-effects model. 

3 GAM: generalized additive model. 

4 IVW: inversed variance weights. 

5 GWR: geographical weighted regression. 

6 ML: high-dimensional expansion (HD-expansion) + elastic-net regression. 

7 RF: random forest. 

 

 

 

 

 

 

 

 Methods Annual monthly daily hourly 

This study  0.93, 3.58 0.96, 5.21 0.92, 12.24 0.82-0.88, 16.12-22.06 

Xiao et al. (2017) MI1+LME2+GAM3 0.73-0.81, 18-25 - 0.71-0.82, 17-24 - 

Hua et al. (2019) IVW4+GAM 0.63-0.86,13.83-27.48 - - - 

Jing et al. (2023) LME+GWR5 - 0.92, 5.72 - - 

Xue et al. (2019) ML6+GAM 0.75, 9.9 0.68, 18.1 0.61, 27.8 - 

Liu et al. (2022) RF7 - 0.90,18.7 0.89,12.0 0.84, 15.9 

Geng et al. (2021) RF 0.80-0.88, 13.9-22.1  - - - 



 
Figure S1. Density scatterplots of results of PM2.5 estimates (µg/m3) during the (a) day and (b) night. 

The dashed and solid lines denote 1:1 and best-fit lines from linear regression, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Annual PM2.5 distributions of MERRA-2, CHAP, LGHAP, and this study. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3. Distributions of calculated PWE using the generated PWE in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Distributions of calculated PWE using the CHAP data. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5. Distributions of calculated PWE using the LGHAP data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6. Distributions of calculated PWE using the LGHAP data. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7. Distributions of calculated PWE of Beijing, Tianjin, and Shijiazhuang using generated 

data in this study, CHAP, LGHAP, and MERRA-2. 

 

 

 

 

 

 

 

 

 

 

Figure S8. Heatmap of correlation coefficient (r) of PWE among all datasets. 



 

 

 

 

 

 

 

 

Figure S9. Heatmap of coefficient determination (R2) of PWE among all datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S10. Boxplots of variations of estimated PM2.5 of the BTH region during each hour. The blue 

solid line represents the mean value of each hour. 



Figure S11. Mean values of each subregion of the BTH region for each hour. 

Figure S12. Distributions of estimated PM2.5 in the BTH region over 24 h.  



 

Figure S13. Distributions and bar plots of RER of each subregion in the BTH region: (a) Spring, (b) 

Summer, (c) Autumn, (d)Winter, and (e) Annual. 
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