
Supplementary S1. Construction of the auxiliary information spatial database. 

To compile the auxiliary information database for this study we performed an initial literature 

review to identify potential sources of information correlated with different factors affecting above 

ground biomass change, Δ𝐴𝐺𝐵. We evaluated the potential of different datasets to provide 

information correlated to Δ𝐴𝐺𝐵. We also assessed the compatibility of each dataset with the scope 

and needs of PNW-FIA and considered factors such as resolution, temporal and spatial coverage, 

interpretability, and planned updates and maintenance in the initial screening of data sources. After 

this revision process, we selected eight base datasets that provided the raw information used to derive 

the auxiliary variables that were finally included in the database. These data sources and their 

associated auxiliary variables were classified as: 

Proxies for potential forest AGB productivity 

1. 30-year climate normals for the period 1981-2010 from the Parameter-elevation 

Regressions on Independent Slopes Model, PRISM, developed by the Oregon State 

University PRISM group [1]. 

2. Cleland et al. [2] level-3 ecoregions (i.e., “subsections”). 

3. 1 arc-second (30 m) Shuttle Radar Topography Mission, SRTM, digital terrain models 

Proxies for disturbance and AGB removals. 

4. Disturbance maps from the Landscape Change Monitoring System, LCMS, Science Team 

5. Fire severity maps from the Monitoring Trends in Burn Severity, MTBS, program. 

6. Changes in the United States National Land Cover Database, NLCD, maps. 

Proxies for management regimes 

7. Ownership maps maintained by the Oregon-Washington Bureau of Land Management, 

BLM, office. 

Multitemporal AGB maps developed with data independent of FIA. 
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8. The multiyear forest AGB map by Fekety and Hudak [3] was developed using lidar data 

from 176 collections acquired between 2002 and 2016 and annual Landsat image time 

series (2000-2016), climate and topographic metrics 

The proxies for potential forest AGB productivity were selected with the aim of obtaining 

information about the main intrinsic characteristics of the region that influence vegetative growth. 

These variables are not expected to change substantially during 2002-2018. The proxies for 

disturbance and land-use change provide information potentially correlated to forest AGB removals. 

Events mapped by auxiliary variables in this category include fires, thinning, and harvest operations or 

insect outbreaks. The proxies for management regimes are included in the database because 

management practices from different stakeholders can result in substantially different forest AGB 

dynamics. The last base dataset is the multi-year above-ground biomass map from [3]. This map is 

based on auxiliary information including lidar, Landsat imagery, climate metrics, and topographic 

metrics and is expected to provide precise proxy values of forest AGB for all years from 2000 to 2016. 

However, apart from its accuracy and precision, the most important characteristic of this dataset is 

that it was developed using ground measurements taken in projects outside of the PNW-FIA program. 

Thus, it can be considered a data source independent of the PNW-FIA sampling design. 

The auxiliary information database only included the derived auxiliary variables, and to facilitate 

and standardize the computation of estimators that rely on pixel counts, all variables were included 

as raster layers with a common grid and reference system. The common grid had a resolution of 30 m 

and used CONUS NAD83 Albers equal-area as a reference system. The coordinates of the lower-left 

pixel were xmin=-2,206,050 m and ymin=2,508,420 m. A GIS layer with the boundary of the state of 

Oregon was downloaded from the US Census Bureau 

https://www2.census.gov/geo/tiger/GENZ2018/shp/cb_2018_us_state_500k.zip and was used to 

mask all pixels whose center fell outside the state. Steps used for the computation of each auxiliary 

variable are described in detail in the following subsections. 

Proxies for potential forest AGB productivity 
Auxiliary variables considered as proxies for potential forest AGB productivity included topographic 

and climatic indexes and classification of ecological regions. These variables were selected to obtain 
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information about the main intrinsic characteristic of the territory with an influence on vegetative 

growth. Available auxiliary information on soils was considered initially but discarded because the 

coverage of the soil surveys in the state of Oregon is not complete. The resolution and detail of these 

surveys is significantly coarser than the resolution of all other auxiliary information datasets used in 

this study. All variables in this category were considered static variables as they are not expected to 

change substantially during the period 2002-2018. 

Topographic indexes: 
A 1 arc-second Shuttle Radar Topography Mission, SRTM, digital terrain model, DTM, was obtained 

from the Google-Earth-Engine platform [4] and then resampled using bilinear interpolation to match 

the common grid and reference systems of the auxiliary information spatial database. The 

transformed DTM directly provided values of elevation, 𝐸𝐿𝐸𝑉, and was used to obtain the slope, 𝑆𝐿𝑂𝑃𝐸, and aspect of each pixel. One categorical variable was created with elevation. This variable 

had 3 classes of elevation with the same areal representation in the state of Oregon. 𝐶𝐴𝑇𝐸𝐿𝐸𝑉. 

Finally, aspects were transformed to heat load, 𝐻𝑇𝐿, index values using Equation (S1), where the 

maximum potential for growth was set to the Southwest direction after [5,6]. 𝐻𝑇𝐿 = 0.5 ∗ (1 + 𝐶𝑜𝑠(225 − 𝐴𝑠𝑝𝑒𝑐𝑡)) (S1)

The variables 𝐸𝐿𝐸𝑉, 𝑆𝐿𝑂𝑃 and 𝐻𝑇𝐿 were included in the database as static and continuous variables. 

Climate auxiliary variables: 
Climate auxiliary information was obtained from the Parameter-elevation Regressions on 

Independent Slopes Model, PRISM, developed by the Oregon State University PRISM group [1]. Grids 

of 800 m resolution containing 30-year normals of monthly mean precipitation, monthly mean 

temperature, monthly minimum temperature and monthly maximum temperature for the period 

1981-2010 were obtained from https://prism.oregonstate.edu/. Thirty-year normals were used to 

compute Paterson’s climatic productivity index, 𝑃𝐶𝑃𝐼, as 𝑃𝐶𝑃𝐼 = 5.3 ∗ 𝑙𝑜𝑔((𝑉 ∗ 𝑃 ∗ 𝐺 ∗ 𝑓)/((𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) ∗ 12)) − 7.4, (S2)

where: 𝑉 is the mean monthly temperature of the warmest month in degree Celsius; 𝑃 is the mean 

annual precipitation in mm computed summing the mean precipitation of the 12 months of the year; 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 are, respectively, the monthly maximum temperature of the warmest month and 
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the monthly minimum temperature of the coldest month, both in degree Celsius; 𝐺 is the length of 

the growing period computed from mean monthly values of precipitation and temperature using 

Gaussen criteria as indicated in [7] but excluding days with temperatures below 5° C in which plants 

are expected to have very little or no growth at all [8], (i.e., number of days a year where the mean 

precipitation is larger than two times the mean temperature and the mean temperature is above 5° 

C). Finally, 𝑓 is a solar radiation factor that depends on the number of sun hours per year, 𝑛𝑠𝑢𝑛, in a 

given point and is calculated using Equation (S3). 

𝑓 = 2500𝑛𝑠𝑢𝑛 + 1000 (S3) 

All parameters in 𝑃𝐶𝑃𝐼 except 𝑓 were computed using the 800 m grids obtained from PRISM and 

then resampled to the 30 m resolution of the auxiliary information database using bilinear 

interpolation. The solar radiation factor 𝑓 was computed by first downscaling the SRTM DTM 

described earlier to a 600 m resolution and then using the Area Solar Radiation tool in ESRI ArcGIS 

10.6 [9] to obtain 𝑛𝑠𝑢𝑛 for each pixel. The 600 m resolution was chosen because it is slightly finer than 

the 800 m resolution of the other climate variables and also a multiple of the 30 m resolution of the 

auxiliary information grid of the auxiliary information database. The solar radiation factor 𝑓 was 

computed from the 𝑛𝑠𝑢𝑛 grid using equation (22) and resampled to the common 30 m resolution grid 

using bilinear interpolation. Finally, the resulting 30 m resolution grids of 𝑉, 𝑃, 𝐺, 𝑓, 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 

were used to derive a 30 m 𝑃𝐶𝑃𝐼 grid for the entire study area. The 𝑃𝐶𝑃𝐼 index map was assumed to 

collect the main climate features affecting Δ𝐴𝐺𝐵 caused by steady growth and was included in the 

database as a continuous and static variable. The 𝑃𝐶𝑃𝐼 map was also divided into three categories 

(low, medium and high climate productivity) with equal area and the resulting categorical variable, 𝐶𝐴𝑇𝑃𝐶𝑃𝐼, was included in the database. 

Clealand’s Ecoregions: 
In addition to the topography and climate index described above, we considered the level-3 

ecoregions (i.e. “subsections”), 𝐸𝐶𝑂 hereafter, in [10]. Mc Nab et al. [2], describe the ecoregions as: 

“relatively homogeneous physical and biological components that interact to form environments of 

similar productive capabilities”, thus they are potentially useful descriptors of Δ𝐴𝐺𝐵 resulting from 

natural vegetation dynamics. While climate and topography play an important role in the definition of 
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ecoregions, other factors such as geomorphology, lithology, or soil types are also considered [2] when 

defining ecoregions. Thus, ecoregions cannot be considered a variable directly derived from climate 

and elevation only. The auxiliary variable 𝐸𝐶𝑂 was included in the database as a categorical and static 

variable. 

Proxies for disturbances 
Proxies for disturbances and land-use changes were selected based on their potential to provide 

information correlated to forest AGB removals. Events mapped by these auxiliary variables include 

fires, thinning, and harvest operations or insect outbreaks. We selected three sets of auxiliary 

variables as proxies for disturbances of different nature. These sets of maps consider disturbances 

occurring at different dates and they were adapted to reflect changes occurring in 10-year periods. 

The first dataset was fire severity which provided auxiliary information specifically related to the 

effects of wildland fires and was based on products from the Monitoring Trends in Burn Severity, 

MTBS, program. The second one was a general disturbance map generated by the Landscape Change 

Monitoring System, LCMS, Science Team, using LANDSAT imagery. The last set of auxiliary maps was 

based on the land use maps from the National Land Cover Database, NLCD. 

MTBS fire severity maps: 
Wildland fires cause significant forest AGB losses that can frequently exceed 200 Mg ha-1 in the 

most severely affected high biomass forest within a fire perimeter [11]. The MTBS program is a US 

nationwide multi-agency effort to produce consistent maps of the extent and burn severity of large 

wildland fires that have occurred in US since 1984 [12]. Fire perimeters and burn severity maps are 

produced and updated by the MTBS program. MTBS fire severity maps consider seven classes (i.e., 

outside-fire polygons, increased greenness, underburned-unburned, low-severity, moderate-severity, 

high-severity, and not-mapped) that are defined based on the differenced normalized burn ratio dNBR 

calculated using Landsat imagery [12].  

We included maximum fire severity maps in the auxiliary information database for 10-year periods 

derived from the MTBS fire severity maps. We first replaced the “not-mapped” category in the original 

fire severity maps by applying two consecutive majority filters to the pixels in this class. Then, a 

resampling step was necessary to transform the original MTBS grid to the base grid of the auxiliary 
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information database. The resampling was done using nearest-neighbor interpolation to account for 

the categorical nature of the MTBS products. Finally, a second pre-processing step was necessary to 

summarize the yearly MTBS maps into auxiliary variables relative to 10-year periods. In this step, pixels 

that were not affected by fire during a 10-year period were assigned to the outside-fire category. The 

remaining pixels were assigned to the most severe category for the 10-year period under 

consideration. The resulting maps, denoted as 𝑀𝐴𝑋𝐹𝑆𝐸𝑉 , with 𝑡 indicating the first year of the 

period, were included in the auxiliary information database and as dynamic categorical variables. 

LCMS accumulated disturbance maps: 
To account for the effects of other events affecting ΔAGB, disturbance maps for 10-year periods 

were generated using a disturbance map generated by the LCMS Science Team for the period 1984-

2017. This dataset used the grid and reference system of the auxiliary information database, so no 

resampling operations were necessary. The LCMS disturbance map provided the starting year, 

duration, and magnitude of up to 9 disturbances from 1984-2017. Disturbances were not attributed 

to any specific agent and their magnitudes were measured using the relativized differenced 

normalized burn ratio RdNBR. For every pixel in the study area, we constructed a continuous RdNBR 

disturbance profile using the following method. From the year 1984 to the year when the first 

disturbance was detected, the disturbance profile value was 0. Then the profile had a slanted segment 

whose width was the duration of the first disturbance. They coordinate at the end of this segment, 

the end of the last year of the disturbance, was the magnitude reported in the LMCS map. The profile 

continued with a flat segment, i.e., no change in y, until the second disturbance was found and added 

a new slanted segment. This process was repeated until no more disturbance events were left. Finally, 

the last segment of the profile was a flat segment from the end of the last disturbance to the end of 

year 2017 (Figure S1). 

The disturbance profiles were used to calculate accumulated RdNBR disturbance values for 10-year 

periods. For each ten, the accumulated disturbance of a given pixel was computed from the RdNBR 

disturbance profile as the difference between the y coordinate of the last year of the period minus 

the y coordinate of the first year the period. We will refer to the auxiliary variables resulting from 
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accumulating disturbances in 10-year periods as 𝐴𝐶𝐷𝐼𝑆𝑇  where 𝑡 represents the first year of the 

period. These variables were included in the database as dynamic and continuous variables. 

 

 
Figure S1. Construction of accumulated disturbance profile and computation of accumulated 
disturbance for a 10-year period using LCMS data. 

Presence/absence of disturbance events 
We derived an additional categorical auxiliary variable, 𝐶𝐴𝑇𝐴𝐶𝐷𝐼𝑆𝑇 , by combining 𝐹𝑆𝐸𝑉  and 𝐴𝐶𝐷𝐼𝑆𝑇 . This variable indicated areas suffering no disturbances, minor disturbances and major-

disturbances. Pixels where 𝐴𝐶𝐷𝐼𝑆𝑇  was zero and their 𝐹𝑆𝐸𝑉  class was outside-fire were assigned to 

the no-disturbance category. The remaining pixels were assigned to the minor or major disturbance 

category based on the values of 𝐴𝐶𝐷𝐼𝑆𝑇 . We established a threshold to separate minor and major 

disturbances using pixels inside the MTBS fire polygons as reference. We obtained a sample of 282,800 

pixels inside MTBS fire polygons and pixels classified as affected by moderate or high severity fire 

effects were assigned the value 1 and pixels in the low severity, unburned or underburned, or 

increased greenness categories were assigned the value 0. This subsample was used to fit a simple 

logistic generalized linear model with 𝐴𝐶𝐷𝐼𝑆𝑇  as predictor, instead of using a 0.5 probability to derive 

the threshold for classification, we used the PresenceAbsence R package [13] to search for the value 

of the linear predictor that optimized the Kappa index. This threshold was used to classify all pixels 
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that were not included in the initial no-disturbance category. The resulting maps, 𝐶𝐴𝑇𝐴𝐶𝐷𝐼𝑆𝑇 , were 

included in the database as dynamic and categorical variables. 

NLCD land-cover change 
We used the NLCD land-cover maps [14] for 2001, 2004, 2006, 2008, 2011, 2013, and 2016 to 

generate maps of land-cover change for 10-year periods. The NLCD land-cover maps were obtained 

from https://www.mrlc.gov/data and do not provide a yearly stack of land-cover maps which required 

defining criteria to select NLCD land-cover maps for the beginning and end of each 10-year period. 

That map was selected when the beginning or end of a 10-year period had an associated NLCD land-

cover map. When the beginning or end of a 10-year period did not have an associated NLCD land-

cover map, the NLCD map for the closest year was selected. If two NLCD maps were at the same 

distance from the beginning or end of the 10-year period, the NLCD map that resulted in an interval 

closest to 10 years was chosen. For example, for the period 2005-2015, the closest NLCD map for the 

end of the period is from the year 2016, but the NLCD maps for years 2004 and 2006 both have a lag 

of 1 year with respect to 2005. In this case, the NLCD map from 2006 was selected as the period 2006-

2016 results in a 10-year difference while the NLCD map from 2004 results in a 12-year difference. 

NLCD land-cover maps used to derive land-cover changes for each 10-year period under consideration 

are reported in Table S1. 

Land-cover maps from NLCD have a hierarchical legend that considers a detailed set of land-cover 

types. Before computing changes, we reclassified the NLCD legend into forest/non-forest by 

considering forest as NLCD classes 41, 42, and 43. Once NLCD maps were reclassified we calculated 

changes for each 10-year period. The resulting maps, ∆𝑁𝐿𝐶𝐷 , were included in the auxiliary 

information database as dynamic categorical variables and contained four possible values of land-

cover change (Forest remains Forest, Forest to Non-Forest, Non-Forest to Forest and Non-Forest 

remains Non-Forest). 

Table S1. NLCD maps used to derive land-cover change auxiliary maps for each 10-year period. 

Period NLCD 
beginning year NLCD end year 

2001-2011 2001 2011 
2002-2012 2001 2011 
2003-2013 2004 2013 



9 
 

2004-2014 2004 2013 
2005-2015 2006 2016 
2006-2016 2006 2016 
2007-2017 2006 2016 
2008-2018 2008 2016 

Ownership 
Management practices from different stakeholders can result in very different forest AGB 

dynamics. For example, in the western part of the state, the privately owned industrial forest is 

typically managed with short rotation periods (i.e., 40-50 years) and clear-cuts result in most of the 

forest AGB being removed at the end of the rotation period. This cycle is very different to the one 

used in some areas managed by state or federal agencies, where creating a stable and diverse forest 

structure is typically the priority. To account for different stakeholders' management practices, we 

used the land tenure zones map maintained by the Oregon-Washington Bureau of Land Management, 

BLM, office (https://navigator.blm.gov/api/share/pub_5c190af841654394). This map includes 26 

ownership categories differentiating between different federal agencies, state and local public entities 

and several types of private stakeholders. The 26 original categories were reclassified into six broader 

groups (1 US Forest Service, 2 BLM, 3 Other federal, 4 State and local, 5 Private and tribal, and 6 

Water). While ownership changes certainly occur, we considered 𝑂𝑊𝑁 as a static categorical variable 

during the period 2002-2017. This is a limitation, but no ownership maps with a better temporal 

resolution were available. In addition, we considered extensive ownership classes that support the 

idea that these categories will not vary much over the period 2002-2018, as most ownership changes 

can be expected to occur within single ownership classes (e.g., private owners to private owners). 

Change in multi-year forest AGB map 
The multiyear forest AGB map by Fekety and Hudak [3] was developed using lidar data from 176 

collections acquired between 2002 and 2016, Landsat imagery, climate metrics and topographic 

metrics as auxiliary information. A sample of 3805 field plots collected by different stakeholders 

[15,16] and independent of the PNW-FIA inventory was used to train random forest models to predict 

forest AGB. These were single-date predictions corresponding to the dates when the ground data were 

collected and within three years of the lidar collection date. Single-date predictions were then 

projected forward and backwards using Landsat time series and climate and topographic metrics to 
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generate forest AGB trajectories for the period 2001-2016 for each pixel. A bias correction factor was 

finally applied to each year’s map to scale means derived from the map to totals means derived using 

FIA plots in the mapped area using FIA plots. To eliminate any double use of the plot data collected by 

FIA, we used the uncorrected predictions of AGB biomass for each year.  

We used the forest AGB trajectories to generate predictions of forest Δ𝐴𝐺𝐵 per year for each 10-

year interval under analysis. For all periods except for the decade 2007-2017 and 2008-2018 the forest Δ𝐴𝐺𝐵 per year was computed as difference between the forest AGB for time 𝑡 + 10 and the forest 

AGB for time 𝑡 divided by 10. For the decades 2007-2017 and 2008-2018, we calculated the per year 

change in forest AGB for 2007-2016 and 2008-2016 and divided the result by nine and eight years, 

respectively. This variable is a continuous variable that we denoted as Δ𝐶𝑀𝑆 . We derived an auxiliary 

variable for EPS estimators based on categorical variables. This variable, 𝐶𝐴𝑇Δ𝐶𝑀𝑆 , was defined 

binning the range of values of Δ𝐶𝑀𝑆  with the following intervals (−∞, −8], (−8, −4], (−4, 0], (0,4], (4,8] and (8, ∞). Both, Δ𝐶𝑀𝑆  and 𝐶𝐴𝑇Δ𝐶𝑀𝑆  were considered dynamic auxiliary variables. 
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Supplementary S2. Summary TREE-EPS and TREE-EPS-CMS. 

 

Figure S2. Partitioning tree for TREE-EPS for the estimation unit other lands (OL). Auxiliary variables are: changes in NLCD classes (∆𝑁𝐿𝐶𝐷 ), accumulated 
disturbance from LCMS for the period t and t +10, (𝐴𝐶𝐷𝐼𝑆𝑇 ), ecoregion (ECO), Paterson climate productivity index (PCPI), ownership (OWN), slope (SLP) 
and elevation (ELEV). See Appendix A for details about the computation of each auxiliary variable. The size of the circles around each node of the tree is 
proportional to the size of the group being split. 
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Figure S3. Partitioning tree for TREE-EPS for the estimation unit national forest lands not classified as wilderness areas (FS). Auxiliary variables are: changes 
in NLCD classes (∆𝑁𝐿𝐶𝐷 ), accumulated disturbance from LCMS for the period t and t +10, (𝐴𝐶𝐷𝐼𝑆𝑇 ), ecoregion (ECO), Paterson climate productivity 
index (PCPI), ownership (OWN), slope (SLP) and elevation (ELEV). See Appendix A for details about the computation of each auxiliary variable. The size of 
the circles around each node of the tree is proportional to the size of the group being split. 

 

 

Figure S4. Partitioning tree for TREE-EPS for the estimation unit national forest lands designated as wilderness areas (WL). Auxiliary variables are: changes 
in NLCD classes (∆𝑁𝐿𝐶𝐷 ), accumulated disturbance from LCMS for the period t and t +10, (𝐴𝐶𝐷𝐼𝑆𝑇 ), ecoregion (ECO), Paterson climate productivity 
index (PCPI), ownership (OWN), slope (SLP) and elevation (ELEV). See Appendix A for details about the computation of each auxiliary variable. The size of 
the circles around each node of the tree is proportional to the size of the group being split. 
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TREE-EPS-AGB 

 

Figure S5. Partitioning tree for TREE-EPS-CMS for the estimation unit other lands (OL). Auxiliary variables are: changes in NLCD classes (∆𝑁𝐿𝐶𝐷 ), change 
is the difference between predictions of AGB from CMS map for years t and t +10, (∆𝐶𝑀𝑆 ), ecoregion (ECO), Paterson climate productivity index (PCPI), 
ownership (OWN), slope (SLP,) and elevation (ELEV). See Appendix A for details about the computation of each auxiliary variable. The size of the circles 
around each node of the tree is proportional to the size of the group being split. 
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Figure S6. Partitioning tree for TREE-EPS-CMS for the estimation unit national forest lands not classified as wilderness areas (FS). Auxiliary variables are: 
changes in NLCD classes (∆𝑁𝐿𝐶𝐷 ), change is the difference between predictions of AGB from CMS map for years t and t +10, (∆𝐶𝑀𝑆 ), ecoregion (ECO), 
Paterson climate productivity index (PCPI), ownership (OWN), slope, (SLP) and elevation (ELEV). See Appendix A for details about the computation of each 
auxiliary variable. 

 

Figure S7. Partitioning tree for TREE-EPS-CMS for the estimation unit national forest lands designated as wilderness areas (WL). Auxiliary variables are: 
changes in NLCD classes (∆𝑁𝐿𝐶𝐷 ), change is the difference between predictions of AGB from CMS map for years t and t +10, (∆𝐶𝑀𝑆 ), ecoregion (ECO), 
Paterson climate productivity index (PCPI), ownership (OWN), slope (SLP) and elevation (ELEV). See Appendix A for details about the computation of each 
auxiliary variable. The size of the circles around each node of the tree is proportional to the size of the group being split.  

 


