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1. Increasing water scarcity in Peninsular India

With a global increase in drought frequency and severity, the drought assessment has become of 

paramount importance in India’s temperate climate, which predominantly governs crop productivity 

[1–3]. Unsustainable extraction by anthropogenic activities in conjunction with the climate shift to 

warmer temperature has reduced groundwater availability and impaired its quality, making it 

vulnerable to projected climate change and population growth [4,5]. The water scarcity in India has 

recently been expanded to the agriculturally important Peninsular India, where overexploitation of 

groundwater (GW) and fluctuations in monsoon rainfall may further magnify the prevailing GW stress 

and impose subsequent food security risks [6]. Some of the river basins located in Peninsular India are 

moderate to severely non-resilient to the hydrological disturbances and have experienced seasonal to 

long-term water shortages [6]. However, droughts in India are mostly reported based on the percentile 

of rainfall and sometimes even by visual drying of the land surface [7], highlighting a need for 

quantitative and robust drought characterization based on integrated water storage deficits (WSD). 

Under these circumstances, understanding the basin-scale hydrological fluxes becomes vital for better 

monitoring and characterizing droughts and subsequent water resources management under the 

prevailing conditions. In the absence of a real-time integrated drought monitoring platform in India, 

timely and reliable identification and classification of the drought events are in urgent need.  

Although India receives an annual rainfall of 1200 mm (highest amongst countries of comparable size) 

[8], due to the highly uneven distribution in spatial and temporal scales, about half of the country is 

either already affected or vulnerable to the water deficit conditions at various levels of water scarcity 

[9–11]. This water scarcity situation in India, and in the study basins in Peninsular India, is expected 

to worsen due to the combined impact of natural (climatic shifts to warmer temperatures) and 

anthropogenic factors (the high water demand from the growing population). Since most of the water 

demands in the basins are met by the groundwater withdrawals, which are highly dependent on the 

fluctuating monsoon precipitation, understanding various factors governing the groundwater 

availability in the region becomes of paramount importance. As per the assessment by the Central 

Groundwater Board, the ratio of groundwater consumption to recharge is over 100% (i.e., 

consumption>recharge) in some parts of North-West India, implying the unsustainable use of the GW 

in the region [12]. Moreover, out of 6584 GW assessment units, 1034 are already over-exploited, and 

253 are critical, and another 681 are semi-critical [12], affecting 33% area of India already and making 

another 28% area vulnerable to the water deficit conditions at various levels of water scarcity [9–11]. 

Apart from the dependence of livelihood, variabilities of the prevailing groundwater resources limit 

crop production and hamper economic development in the region. Therefore, there is a clear need for 

the basin-wise assessment of the GW resources, which will further assist in efficiently dealing with the 

storage fluctuations and consequences resulting from the monsoon variabilities and lead to effective 

irrigation scheduling in the agriculture dominant study region. 

Although there have been several studies focusing on the North-West Indian region [8,13–17], the 

Peninsular Indian region remains largely unexplored, with only a few recent studies those too 

concentrate only on a short period (e.g., for 2002-2017 [18], for 2002-2016 [19]). To the best of our 



3 | P a g e  
 

knowledge, no study has been carried out to assess the basin-scale integrated and segregated water 

storage dynamics, holistic drought characterization, and assessment of various drought indices 

focusing on groundwater beyond the GRACE period. Therefore, in the current study, for the first time, 

we investigate the water storage dynamics for a period of 35 years (1980-2014) and its implications on 

the intermittent in-situ groundwater observations in the three river basins in Peninsular India, which 

comprise a total of ~22% geographical area of the country.     

 

 

2. Rationale of employing Land Water Storage based WSDI  

 
The traditional approach of drought quantification solely depends on the limited accuracy of the 

ground-based hydro-meteorological data. In-situ data stations and their records suffer from many 

limitations, including inhomogeneous and inadequate distribution of monitoring network, data gaps, 

unavailability at the required spatiotemporal scale, associated high installation and maintenance cost, 

measurement limits within near-surface zones, and need for high human resources [20,21]. 

Furthermore, the drought characterization imposes a difficulty because it must take a multitude of 

dimensions, viz., drought magnitude, duration, type, frequency, and severity, into account [21]. 

Conventional methods for assessing drought severity include many subjective and objective 

information, including hydro-meteorological data and drought impact reports [22]. Additionally, the 

lack of a comprehensive universal definition and poor understanding of its precursors lead to drought 

classification in various categories. The most popular drought indices among a total of more than 150 

and around 74 operational indices are the Standardized Runoff Index (SRI), Standardized Precipitation 

Index (SPI), and Palmer Drought Severity Index (PDSI) [21,23]. SRI, SPI, and PDSI are used to 

determine the seasonal loss in streamflow, monitor short- and long-term regional precipitation 

dynamics, and characterize agro-climatological droughts, respectively [22,24–26]. All of these 

physically-based drought indices rely solely upon the meteorological parameters surface or subsurface 

water storage components and do not consider a combined effect of all these parameters [21,27]. 

Moreover, there is no mechanism in all these indices to incorporate the variability in all water storage 

components, and hence, they lack in providing the integrated water storage deficit information over 

the target area.     

Amid the inherent drawbacks of traditional drought indices, researchers have recently sought 

integrated drought indices based on remotely sensed water storage data [21,22]. Drought indices should 

represent the overall state of water resources, thus providing a comprehensive view of droughts for 

more practical, accurate, and viable management and decision-making. Satellite observations followed 

by the postprocessing techniques have proven quite useful for adequate drought characterization and 

monitoring on the required spatial and temporal scales in the past decades, especially after the launch 

of Gravity Recovery and Climate Experiment (GRACE) satellites [28]. Drought characterization based 

on the remotely sensed data of land water storage (LWS) outperforms the traditional methods because 

it represents the integrated deficits in surface water, soil moisture, and groundwater over the region of 

interest and thus depicts the real picture of bulk water dynamics [21,29]. Many integrated drought 

indices, primarily GRACE based, have been introduced and employed to assess the droughts globally, 

including the hydrological drought index (GHDI) [30] applied for the continental United States, total 
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storage deficit index (TSDI) for Northwestern China [29] and the Saskatchewan River Basin in Canada 

[31], terrestrial water storage (TWS) anomaly index (TWSI) [32] for the Haihe River Basin, China at 

various spatiotemporal scales. However, these studies depend on limited data sources covering a short 

duration equal to that of GRACE records, thus lacking a robust global framework for long-term drought 

characterization. This data brevity issue with the GRACE data limits our ability to get insights into the 

water resources dynamics far beyond the GRACE records. In this context, given the ability of the PCR-

GLOBWB 2.0 model (taken as an example for demonstration purpose in our study) to simulate the 

various water storage components, we hypothesize that the model output can be used for a robust but 

straightforward basin-scale decadal drought assessment in terms of the water storage deficits and 

subsequent characterization of droughts (magnitude, duration, severity, and recovery time), beyond the 

GRACE satellite observations. Further, we compared the water storage deficit index (WSDI) with sc-

PDSI and SPI12. Since the contribution of the surface water component to LWS is negligible in the 

study area, SRI was not included in the analysis. WSDI (whether PCR-GLOBWB based: modelled 

WSDI (WSDIm) or GRACE based: WSDIg) accounts for both the natural processes (rain, infiltration, 

evaporation, storage, etc.) as well as the anthropogenic activities (groundwater abstraction, supply, 

irrigation, etc.) in the terrestrial hydrologic system, and therefore provide holistic assessment of the 

bulk water storage dynamics in the region. Moreover, unlike WSDIm, WSDIg is free from the impact 

of the uncertainties arising from the water balance models or from the hydrometeorological forcing. 

Segregation of the natural and anthropogenic components of variability in various water storage 

components is beyond the scope of this study, and should be considered in the future research. Lastly, 

to address the challenge for a real-time monitoring framework imposed by the irregular measurements 

of the groundwater in the region, we assessed the ability of the water storage deficit index (WSDI) to 

substitute the groundwater drought index (GWDI). We show that WSDIg can be used for quick 

monitoring of the groundwater in the region thus eliminating the need of any model simulation and 

dependence on the sporadic in-situ observations. 

 

 

 

3. PC Raster Global Water Balance version 2 (PCR-GLOBWB 2.0) model  

PCR-GLOBWB 2.0 model, which is a conceptual and process-based global (except Greenland and 

Antarctica) hydrology and water resources model (GHWRM) with a computational grid of 5 arcmins 

(0.1°×0.1°) and simulates the hydrological fluxes at a daily time step [33]. The model integrates human 

water use with the dynamic water balance between surface and subsurface water storage in two 

vertically stacked soil layers (soil zone depth of 1.5 meters) using the five-module setup, namely 

‘irrigation and water use module’, ‘meteorological forcing module’, ‘land surface module’, 

‘groundwater module’ and the ‘surface water routing module’ [33,34]. The model considers both 

upward (e.g., capillary rise) and downward (e.g., deep percolation) fluxes between atmosphere and 

various model layers [35]. At each time step, the model first calculates the water demands for irrigation, 

industry, domestic, and livestock based on temperature and socioeconomic developments (e.g., Gross 

Domestic Product, electricity production, etc.) based on FAOSTAT data, and then compare these 

demands to the actual availability of the water resources in the region and finally calculates the return 

flows per sector [34]. The standard land cover parameterization of the ‘land surface module’, which 

considers the spatiotemporal variability in the vegetation properties (e.g., crop factor, leaf area index, 
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LAI), and soil types and texture, was used [33,36]. Except for the precipitation (which was retrieved 

from the IMD), WATCH Forcing Data based on ERA‐Interim reanalysis (WFDEI, temperature, 

shortwave downwelling, and longwave downwelling radiation) were used [37], similar to a previous 

study [38].  

Due to the non-availability of continuous ground data for model calibration, similar to the previous 

studies [33,38–42], the model was not calibrated, and the standard parameterization settings were used. 

Since precipitation has been shown the most critical parameter in model output rather than the model 

parameters’ uncertainties [43–45], we have used the high quality regional daily precipitation data 

(0.25°x0.25°) from the India Meteorological Department for the study duration 

(https://www.imdpune.gov.in/;[46]). A spin-up period of 50 years using the hydro-meteorological data 

of the year 1901-1950 (IMD precipitation data is available for 118 years, 1901 to 2018; 

https://www.imdpune.gov.in/) was used to enable the groundwater volumes to be in equilibrium with 

the study’s current climatic settings. Daily outputs of individual water storage components for each 

grid cell were converted to the basin averaged monthly time series (for consistency in comparison with 

GRACE-based estimates of GWS: GWSg) and summed to get the modeled land water storage 

(LWSm =  SMSm + SWSm + GWSm). Although the modeled surface water storage (SWSm) was used 

in calculating LWSm, it is not explicitly analyzed in the study because of its negligible contribution to 

LWSm and subsequent insignificant decadal trends compared to other components. The long-term 

mean of LWSm from 04/2002 to 12/2014 (consistent with LWSg baseline time) was subtracted from 

LWSm time-series to get the monthly anomaly series of LWSm (figure S2).  

Please note that we do not endorse the PCR-GLOBWB model over other global hydrological and water 

resource models (GHWRMs) such as WGHM (WaterGAP Global Hydrology Model, which also 

includes coupling of human water use and reservoir management although with different mechanisms 

of water abstraction, groundwater availability, among others, compared to PCR-GLOBWB)  [33,47–

49], among others [50], which have also been used for analyzing the land water storage at various 

global [38] or regional scales [18]. We have just chosen one global model for demonstration purposes 

of how well we can understand the dynamics and variability of land storage and its constituent 

components beyond the GRACE time period and subsequently assess the capability of land water 

storage (whether LWSg or LWSm) to depict the near-real-time groundwater situation in the region.  

Regarding the global hydrological model, it should be calibrated with the ground data, wherever 

available (e.g., soil moisture [51] discharge data [52], and the performance should be further analyzed 

statistically for the study region into consideration. Also, the applicability of the model as an auxiliary 

data source for GRACE-based water storage estimation can further be characterized either using more 

recent satellite datasets of soil moisture (e.g., SMAP; Soil Moisture Active Passive), land water storage 

(e.g., Swarm [53]), among others. Additionally, wherever available, the in-situ data records can also 

be used to further evaluate the model’s performance to simulate the individual water storage 

components. Advancements towards hyper-resolution global water resource modeling and improved 

methods of satellite gravimetry will further enhance our understanding of the various regional and 

global hydrological systems.  

https://www.imdpune.gov.in/
https://www.imdpune.gov.in/
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4. Gravity Recovery and Climate Experiment (GRACE) data   

The most recently released Level-06 (RL06M v02) monthly GRACE mascon (mass concentration) 

solutions from two processing centers, namely, the Jet Propulsion Laboratory and Centre for Space 

Research (JPL-M and CSR-M, respectively, thereafter) were used for characterizing the dynamics of 

land water storage (LWSg) over the study region [54–57]. This newest data has been corrected in 

several aspects compared to the previous versions, such as representation on ellipsoidal Earth applied 

separately to land and ocean to minimize signal leakage, application of the Coastline Resolution 

Improvement filter leading to the reduced leakage errors across coastlines, the inclusion of the realistic 

geophysical information during the solution inversion to intrinsically remove correlated errors, among 

others. Additionally, unlike the conventional spherical harmonic approach, given their regularization 

process (and hence reduced systematic errors), mascons do not need any additional postprocessing in 

terms of signal restoration [58–60]. Data from April 2002 through December 2014 were used to 

minimize the uncertainties in GRACE estimates, especially at the seasonal time scales, which might 

have been induced due to the operational issues towards the end of the mission [61]. Since the ensemble 

mean of the two independent gravity products is found effective in reducing the uncertainty errors in 

the gravity fields (e.g., [62–64], an arithmetic average of LWSg derived from the two mascon solutions 

was used for further analysis. The basin-wide LWSg are presented in terms of the basin-wide equivalent 

water depth (mm) or equivalent water volume (km3) anomalies relative to the long-term mean of 

04/2002 to 12/2014. The missing values in the data series since early 2011 due to the active battery 

management were filled by the linear interpolation of the two bounding values [63,65].  

 

5. Hodrick-Prescott (HP) filter 

For a doubly infinite series, the cyclic component was estimated in the given data time series 𝑦𝑡 by the 

high pass filter [66]; 

ct̃ =  H̃ (L)yt                                                                                                                                       (S1) 

where H̃ (L) is the weight function with L as the loss parameter. H̃ (L) is given by 

H̃ (L) =  
λ (1−L)2 (1−L−1)2

1+λ (1−L)2 (1−L−1)2
=  

λ L−2(1−L)4

1+λL−2(1−L)4
                                                                                          (S2) 

where, λ (=1600, as most commonly used [67]) is the user-defined smoothing parameter. The trend 

component is then separated by the low pass filter; 

Tt = (1 − H̃ (L)) yt =  (1 + λ (1 − L)2 (1 − L−1)2)−1 yt                                                                (S3) 

where Tt is the HP trend in the respective time series. 
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6. Water storage deficits, drought severity, and recovery time 

Land water or groundwater storage deficits (LWSD or GWSD), i.e., deseasonalized LWSm or GWSm 

(monthly climatology removed from the original anomaly time series), quantify the instantaneous 

drought conditions in the land water or groundwater by the departures from the normal circumstances 

in the particular region but do not depict the severity during the whole period of the event. Moreover, 

LWSD/GWSD does not provide any information of the time elapsed before the water storage 

conditions return to normal, which is imperative for basin-scale water management and policymaking. 

Therefore, in addition to LWSD/GWSD analysis, we further calculated the event severity (Eq. S4 is 

the same as Eq. 3), which represents the cumulative water storage deficit (WSD) for a particular 

drought event (during the period of negative WSD) and thus highlights the overall water loss during 

the event. The product was used to evaluate the cumulative severity of the individual hydrological 

drought events [22];  

St =  M̅t ∗  Dt                                                                                                              (S4) 

 

where St is the event severity (mm months or km3 month), M̅t (mm or km3) and Dt (months) are the 

average water deficit and duration since the onset of the deficit period, respectively. The subscript t 

signifies that all the parameters are a function of time. St characterizes the accumulated influence of 

deficiency associated with a particular drought event.  

 

Further, we calculated the recovery time corresponding to monthly storage deficits (both LWSD and 

GWSD). First, we calculated the rate of change in the monthly water storage deficit as below: 

 
d(WSD)

dt
 =  

WSDi− WSDi−1

∆t
 for i = 1~n                                                                                   (S5) 

where 
d(WSD)

dt
 is the rate of change in LWSD or GWSD (evaluated only for the drought events), ∆t is 

unity since the change was calculated during the consecutive months 𝑖 − 1 and 𝑖, and n is the length 

of LWSm data record. For estimating the recovery time for each month’s deficit, which is defined as 

the time to recover to the average storage conditions, the empirical cumulative distribution function 

(eCDF) of the 
d(WSD)

dt
 series was calculated for three basins, all of which follow the normal distribution 

according to the Kolmogorov-Smirnov (K-S) test for the whole time series (see Fig. S1 below). The 

95th percentile (two-sigma) of the normally distributed eCDF represents the maximum positive rate of 

change of LWSD/GWSD, and hence the minimum recovery time was obtained by dividing the 

LWSD/GWSD for the particular month (in mm or km3) with 2𝜎 value of eCDF (in mm month-1 or km3 

month-1 corresponding to figures S1b and S1d, for GWSD and LWSD, respectively). Thus derived 

recovery time (in months) provides a physical time scale to get back to the normal storage conditions 

during each drought event. 
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Figure S1.  Recovery time calculation. Left: The time derivative of monthly WSD (GWSD and 

LWSD) considering both positive and negative deficits. Right: empirical cumulative distribution 

(eCDF) of d(WSD)/dt and 95th percentile used to determine the minimum time to recovery, all for 

35 years. 

 

 

 

 

 

 

 

 

 

 

(a) (b)

(c) (d)
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7. Standardized indices 

a. Self‐calibrating Palmer Drought Severity Index (sc-PDSI)  

The self-calibrating Palmer Drought Severity Index (sc-PDSI) was used for evaluating the long-term 

droughts in the basins and for quantifying their association with climate change. The sc-PDSI was 

evaluated using the regional level water balance incorporating four inputs, namely, precipitation, air 

temperature, latitude, and field capacity of the underlying soil, following the open access MATLAB 

tool developed by [68]. This method incorporates the two-bucket system-based water balance equation 

as below: 

LU =  
[(ET−P)−LS]SU

FC
                                                                                                                                                                      (S6) 

where LU and LS are the water loss from the underlying and surface layers, respectively, ET is the 

average potential evapotranspiration using the Thornthwaite and Hamon PET methods (applied for 

avoiding any bias associated with a particular method), P and SU are the precipitation and the water 

amount in the underlying layer, FC is the field capacity of the combined soil layers. Monthly Z-values 

were calculated using the water balance output and the full record as the calibration period. This 

method is based on the assumptions and definitions by [69]. Firstly, a monthly water balance is 

calculated, followed by the calculation of the z-index and finally, the PDSI. Ls is the loss due to the 

evapotranspiration from the surface layer, which occurs when ET>P (evapotranspiration > 

precipitation) for a particular month and is assumed to be at a potential rate. SU is the amount of water 

available in the underlying soil layer, which determines the water loss from the layer (LU). FC, i.e., 

field capacity or the available moisture capacity, is the total moisture capacity of the system. All of 

these parameters were calculated by the MATLAB tool, details of which can be found in [68]. This 

method outperforms the traditional PDSI calculation methods in terms of sensitivity to the potential 

evapotranspiration (PET), computational simplicity, and transparency [68].  

b. 12-month Standardized Precipitation Index (SPI12) 

For the Standardized Precipitation Index, 12-months SPI (SPI12) was used for comparing the inter-

and intra-basin drought conditions since shorter time SPIs are highly sensitive to the short-term 

precipitation fluctuations and do not reflect the multiyear droughts robustly [70]. SPI quantifies the 

standardized departure of precipitation from the long-term mean using the normal distribution 

(transformed from gamma distribution using equal probability function) [71]. Since the short time-

scaled precipitation anomalies are reflected only in the soil moisture dynamics, SPI12 was used to 

effectively incorporate its reflection on the integrated land water storage dynamics on the basin scale.  

Detailed reasoning of selecting SPI12 over other shorter time period SPI’s is as below, 

The 3-month (or shorter) SPIs reflect short- and medium-term moisture conditions and provide a 

seasonal precipitation estimation. These SPIs may lead to misinterpretation of the droughts when a 

temporary wet or dry period occurs [70]. Continuous and persistent drought monitoring is imperative 

to accurately determine when droughts begin and end. Large negative or positive in 3-month (or 

shorter) SPIs may be associated with precipitation totals that are not very different from the long-term 
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mean. This behavior becomes much more critical in the Peninsular Indian region, experiencing the 

high variability of the precipitation extremes due to the south Asia monsoon.  

The 6-month SPI indicates seasonal to medium-term trends in precipitation and is still considered to 

be sensitive to the short-term extreme precipitation conditions. The 9-month SPI indicates inter-

seasonal precipitation patterns over a medium timescale duration. Droughts usually take a season or 

more to develop [70], and hence may not be accurately represented by these short SPIs.  

The 12-month SPI reflects long-term precipitation patterns and tends to gravitate toward zero unless a 

distinctive wet or dry trend is taking place. Also, the multiyear droughts resulting from the various 

water storage components (even including the groundwater storage) are evident in the 12-month SPI. 

Moreover, the PDSI is more closely related to the 12-month SPI than the short-term SPIs [70]. Since 

our focus is to determine the long-term droughts based on the total water storage and their comparison 

with the other indices, keeping the above points into consideration and similar to the previous studies 

(e.g., [58], we have selected the 12-month SPI.  

c. Normalized land water storage index (WSDI)  

First, water storage deficit (WSD) based drought indices for both LWSm and LWSg were calculated. 

The long-term mean of monthly LWSm/LWSg was calculated for each month by averaging the monthly 

values of the LWSm/LWSg anomaly. This climatology was then subtracted from the original time series 

of LWSm/LWSg anomaly to give the water storage deficit amount in a particular month as, 

WSDj,k =  LWSAj,k − LWSA̅̅ ̅̅ ̅̅ ̅̅
k                                                                         (S7) 

where WSD is the water storage deficit, subscripts j and k depict the year and month, respectively, 

LWSAj,k is the land water storage anomaly (based on LWSm or LWSg) for the jth year and kth month, 

LWSA̅̅ ̅̅ ̅̅ ̅̅
k represents the average monthly LWSm anomaly over 35 years or LWSg anomaly over 12 years. 

Monthly deficits (i.e., deseasonalized time series) in other modeled WS components, i.e., SMSm and 

GWSm, were also calculated using Eq. S7. 

Since the water storage deficits represented as volumetric water storage may sometimes be ambiguous 

in interpretation since for a given deficit volume, a smaller area will have a higher intensity of the 

drought than the larger area. Therefore, to eliminate the effect of the geographical area on our analyses, 

the volumetric WSD was further calculated as basin-wide equivalent water depth. Also, for suitability 

of comparative assessment and inter-comparison among the other traditional indices, WSD was 

normalized to get the water storage deficit index (WSDI) following zero-mean normalization 

procedure [21]; 

WSDIj,k =  
WSDj,k− μ

σ
                                                                                                  (S8) 

where WSDIj,k is the normalized water storage deficiency index (WSDI; WSDIm based on LWSm and 

WSDIg based on LWSg) for the jth year and kth month, μ and σ represent the mean and standard 

deviation of the time series of WSD, respectively.  
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d. In-situ groundwater level data   

India’s Central Ground Water Board (CGWB) has been maintaining and monitoring a dense network 

of operational groundwater wells (>15000 in total during 2014-our study duration, which is continually 

increasing) in India ([72–75]. The in-situ groundwater level is measured seasonally, i.e., four times a 

year during January (post-monsoon), May (pre-monsoon), August (monsoon-time), and November 

(post-monsoon) [72]. After screening the wells for temporal continuity (wells having two or more 

continuous gaps were precluded from the analysis) and applying the inter Interquartile range (IQR) 

filter (essentially for reducing outliers and partly the impact of confined aquifers) [76–78],  data of 

1080 wells distributed in the three study basins was further used (Figure 1, Table S1). These wells 

comprise about 32% of piezometers and 68% of the observation/monitoring wells, and the majority 

(~70%) of the wells are dug wells [74]. Most (~88%) of the wells in the study area are located in the 

unconfined shallow aquifer [73].  

Further, for individual wells, the long-time (from May 2002 to Nov 2014) of the groundwater level is 

subtracted from the time series, and then the sign is reversed for depth conversion and multiplied with 

the Sy value to get the groundwater storage anomaly (GWSA) associated with the particular well. The 

individual GWSA calculated per well was further converted to the basin-wide GWSA time series using 

the simple Thiessen polygon method as below, 

GWSAt =  
∑ Ai

n
i=1 ∗ GWSAi 

∑ Ai
n
i=1

                                                                                                                                                           (S9) 

where GWSAt is the resulting basin-scale GWSA for month t,  𝐴𝑖 is the area of Thiessen polygon 

corresponding to well 𝑖.   

 

Most parts of central and southern India, consisting of our study basins, are composed of Pre-

Cenozoic crystalline rocks, consolidated sedimentary formations, and multi-layered basalt flows of the 

Indian craton [73]. Moreover, since all three study basins possess a uniform hydrogeological setting 

(both GRB and KRB are primarily composed of jointed or fractured crystalline aquifer systems and 

MRB is composed of fractured crystalline or consolidated and permeable sedimentary aquifers) 

[79,80], similar to previous studies (e.g., [8,14], assumption of an average value of specific yields (Sy) 

was made for each basin (GRB: 0.023, KRB: 0.022, MRB: 0.039) [79]. Unlike the Indo-Gangetic 

Plain, consisting of the Indus and Ganges river basins, where the hydrogeology is predominantly 

unconsolidated sedimentary aquifers (sandy alluvium), and the maximum groundwater table depth is 

about 1.7 to 2.5 times higher than our study basins [72,79], the use of distributed specific yields is 

highly unlikely to improve the observed groundwater storage time series. To test this assertion, we 

compared our observed GWS with those from previous studies [18,79] using the unique value of Sy for 

individual well for a common period of May 2002 to November 2014. Both the time series agree well 

(Pearson correlation, 𝑟=0.97-0.99; Spearman’s rho, 𝜌~0.98; 𝑝<0.001), and therefore we infer that the 

assumption uniform Sy value does not lead significant uncertainties in our results of long-term trends 

and/or subsequently derived normalized drought indices.  

 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/crystalline-rock
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/basalt
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/craton
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e. Groundwater Drought indices (GWDI) 

Since the in-situ groundwater is available only four times a year and hence may not give a clear idea 

of the storage dynamics, we converted the in-situ data to the groundwater drought index. A statistical 

comparison of the three drought indices viz., GRACE based GWDI (GWDIg), GWSm based GWDI 

(GWDIm), and observed GWDI (GWDIo) (all calculated as per Eq. 4) was conducted to assess the 

potential of PCR-GLOBWB to quantify the groundwater drought conditions. Further details of the 

three types of GWDI used in our study are explained below, 

 GWSm based GWDI (GWDIm): GWDI based on the modeled groundwater (GWSm) was calculated 

using the equation, 

 GWDIj,k =  
GWSDj,k− μ

σ
                                                                                                                                                             (S10) 

where GWDIj,k is the normalized index corresponding to GWSm for the jth year and kth month, μ and σ 

represent the mean and standard deviation of the respective time series, respectively. 

Obs-GWS (GWSo) based GWDI (GWDIo): GWDI based on the observed groundwater storage was 

calculated using the in-situ GWSA time series described in section 7d above and employing the Eq. 

S10 above. 

GRACE-GWS based GWDI (GWDIg): First, GRACE based GWS (GWSg) was calculated using the 

regional water balance, 

GWSA = LWSA −  SWSA − SMSA                                                                                                                                 (S11) 

where LWSA, SWSA, and SMSA are the anomalies of the GRACE-based land water storage (LWSg), 

modeled surface water storage (SWSm), and modeled soil moisture storage (SMSm), respectively. All 

the water storage components were used as monthly time series. Due to the insignificant long-term 

trend in modeled surface water storage (SWSm) and the absence of snowfall events in the study region, 

the surface water and snow water storage components are not explicitly shown in the relevant figures. 

Also, similar to the previous studies [8], due to the inability of GRACE satellites to detect the changes 

in biomass, this component was also excluded from Eq. S11. The GRACE-based GWDI was then 

calculated following Eq. S10. 
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Figure S2. Monthly time series of water storage deficits (WSD). Water storage deficits (both 

depletion and recoveries, i.e., positive and negative storages) in various components (LWSm, SMSm 

and GWSm) for GRB (a), KRB (b), and MRB (c). LWSD stands for land water storage deficit, and so 

on for SMSD and GWSD. This seasonal variability of the water storage deficits was calculated by 

removing the climatology of the respective component for 35 years from Jan 1980 until Dec 2014 (Eq. 

2). 

 

 

 

 

 

 

(a)

(b)

(c)
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8. Impact of South Asia Monsoon 

 

The climate of all three river basins is dominated by the South Asian summer monsoon, contributing 

about 80-85% of annual rainfall in the study region. Precipitation in the whole study region shows a 

seasonal variation due to this monsoon from July to October. The most pronounced fluctuations in the 

Mahanadi River Basin are followed by the Godavari and Krishna river basins. GWS anomalies attain 

a minimum value in May/June in all three basins, which is the end of the summer season and the 

monsoon’s onset in the region. The importance of the South Asian summer monsoon in India can be 

understood by the fact that even minor spatiotemporal variabilities in its annual cycle have led to some 

severe drought conditions. These climatic variations subsequently derive the dynamics of the surface 

water storage (and groundwater withdrawal), which further propagate to soil moisture and groundwater 

storage, and eventually reflect in the land water storage.  

 

 

 

Figure S3. Intra-annual distribution of LWSD and GWSD. Intra-annual distribution (i.e., a 

monthly distribution) of land water storage deficits (LWSD) and groundwater storage deficits (GWSD) 

in the three river basins from Jan 1980 to Dec 2014. Colored and overlaid sky-blue bars represent the 

LWSD (based on LWSm) and GWSD (based on GWSm) respectively.  
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Figure S4. LWSD and GWSD events severity. (a)-(c) Severity (St) of the drought events identified 

based on the water storage deficits (WSD) derived from LWSm (i.e., LWSD) for the (a) Godavari, (b) 

Krishna, and (c) Mahanadi river basins. (d)-(f) Severity (St) of the drought events identified based on 

the water storage deficits (WSD) derived from GWSm (i.e., GWSD) for the (a) Godavari, (b) Krishna, 

and (c) Mahanadi river basins. Event Severity (St) (mm months or km3 months) is equivalent to the 

cumulative LWSm/GWSm deficit during the given drought period.   

 

 

 

 

 

 

 

 

GRB GRB

KRB KRB

MRB MRB

(a)

(b)

(c)

(d)

(e)

(f)
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Table S1. Intercomparison of various drought indices. Pearson correlation of the drought indices 

of the three study basins. Spearman’s rho is also shown in parentheses.  

 

Godavari River Basin 

(GRB) 

Krishna River Basin 

(KRB) 

Mahanadi River Basin 

(MRB) 

Index 

sc-

PDSI 

SPI12 WSDIm  
sc-

PDSI 

SPI12 WSDIm 
sc-

PDSI 

SPI12 WSDIm 

sc-PDSI –   –   –   

SPI12 

0.77 

(0.79) 

–  

0.76 

(0.77) 

–  

0.63 

(0.59) 

–  

𝐖𝐒𝐃𝐈𝐦  
0.62 

(0.58) 

0.59 

(0.56) 

– 

0.69 

(0.67) 

0.63 

(0.60) 

– 

0.54 

(0.49) 

0.38 

(0.30) 

– 

 

Table S2. Drought classification criteria. Drought categorization criteria of the drought events based 

on various drought indices. 

Drought category Drought condition SPI12 sc-PDSI WSDI 

D0 No drought -0.5 < S -1.0 < P 0 < W 

D1 Mild drought -1.0 < S ≤ -0.5 -2.0 < P ≤ -1.0 -1.0 < W ≤ 0 

D2 Moderate drought -1.5 < S ≤ -1.0 -3.0 < P ≤ -2.0 -2.0 < W ≤ -1.0 

D3 Severe drought -2.0 < S ≤ -1.5 -4.0 < P ≤ -3.0 -3.0 < W ≤ -2.0 

D4 Extreme drought S ≤ -2.0 P ≤ -4.0 W ≤ -3.0 

S,  P, and W represent SPI12, sc-PDSI, and WSDI, respectively. 
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