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Summary  

Here we assess the accuracy of the Satellite Vegetation Inventory (SVI), a set of 7 forest attribute rasters at 
a 30-m resolution (forest type, stand height, crown closure, stand volume, total volume, aboveground 
biomass, and stand age) covering roughly 40 million hectares in the Northwest Territories. Several 
independent analyses were undertaken, each using a different reference dataset: National Forest 
Inventory (NFI) ground plots, independent airborne and spaceborne LiDAR (Light Detection and 
Ranging) datasets, helicopter close-up geotagged photos, and several existing conventional Forest 
Vegetation Inventories (FVI). The results from the NFI analysis indicate that the SVI estimates were in 
general more accurate in Phase 1 (mostly corresponding to the Mid-Boreal and High Boreal ecoregions of 
the Taiga Plains Ecozone, see Figure 1 in main article) than in Phase 2 (Low Subarctic Ecoregion). The 
attribute with the best pixel-wise relative root mean square error (%RMSE) corresponded to stand height 
(26% in both phases 1 and 2), and the worst corresponded to volume and aboveground biomass (AGB) 
estimates in Phase 2, where the %RMSE exceeded 100%. Stand age, which was estimated as a function of 
stand height, performed surprisingly well in Phase 1 (%RMSE of 35%, or 31 years), but not in Phase 2, 
where the underestimation bias could be as much as 90 years, owing to the lack of tree ring data in Phase 
2 where trees can be very old and still have a low height. Analysis of unused spaceborne LiDAR plots 
showed that the k-NN imputation did not introduce bias to the forest attribute estimates, and the mean 
absolute difference for stand height, crown closure, stand volume, total volume, and AGB was 19%, 11%, 
36%, 30%, and 29% of their mean value, respectively. The extensive coverage of independent airborne 
LiDAR data provides good insight into the spatial factors affecting the quality of SVI estimates. 
Performance was poorer in steep terrain, heterogeneous landcover types, and less common forest types 
(i.e., broadleaf). Comparison with FVI polygons corroborated that the mean absolute difference between 
the average SVI pixel and its encompassing FVI polygon was small (2 to 3 m in stand height, and 13 to 16 
percentage points for crown closure). Per polygon analyses revealed that the SVI rasters provide better 
estimates for large homogeneous stands, but may do less well in complex multi-story stands. The error 
estimates presented here are conservative because of other factors contributing to the observed differences 
between the SVI estimates and the reference data used in the assessments (e.g., temporal and spatial 
mismatches, which will tend to inflate the differences). Despite the highlighted limitations, this validation 
corroborates the usefulness of our approach to scale up forest inventory information from ground plots 
to wall-to-wall estimates across a large region using geospatial features including synergistic optical, 
LiDAR, and L-band synthetic aperture radar (SAR) data. 
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S1. Introduction 

The goal of the Multisource Vegetation Inventory (MVI) project, a long-standing collaboration 
between the Canadian Forest Service and the Government of NWT (GNWT), is to test, apply, and evaluate 
methods for deriving wall-to-wall information on poorly inventoried northern boreal forests in the 
Northwest Territories (NWT) using limited field data and a variety of remote sensing data, including 
optical (Landsat), light detection and ranging (LiDAR)1, and Synthetic Aperture Radar (SAR) data. The 
study area, which is mostly located in the Taiga Plains Ecozone, is divided into two parts: Phase 1 (151,700 
km2), corresponding to the southern portion of the MVI project; and Phase 2 (244,000 km2), which covers 
the northern portion. A key deliverable of the MVI project is a set of seven 30-m rasters called the Satellite 
Vegetation Inventory or SVI for the approximate2 reference years 2007 (Phase 1) and 2010 (Phase 2). Each 
raster represents one of the following forest attributes: forest type (conifer, broadleaf, mixed), stand height 
(Ht)3, crown closure (CC)4, stand volume (Vs)5, total volume (Vt)6, aboveground tree biomass (AGB)7, and 
stand age8. Except for the first and last, each of these variables is estimated using four main steps:  
 

i. ALS modelling: The variable is first modelled on the basis of a limited set of 38 forest inventory (FI) 
ground plots near Fort Simpson where, in addition to ground measurements, there were airborne 
LiDAR data (also known as airborne laser scanning or ALS data) available; both sets of data were from 
the summer of 2007. The model uses as predictors point cloud metrics derived from the ALS data.  
 

ii. GLAS modelling: The predicted values from the model in (i) are used as “observed” values in a second 
modelling exercise that involves a small set of 43 surrogate FI (forest inventory)   
plots consisting of sites near Fort Simpson with coincident airborne and spaceborne LiDAR. The latter 
came from the Geoscience Laser Altimeter (GLAS), a satellite waveform LiDAR instrument operational 
from 2003 to 2009 that emitted pulses with an average footprint diameter of 70 m spaced at 170 m. The 
predictors in this case are metrics derived from the GLAS data, either directly (for stand height and 

                                                            
1 LiDAR data in this project include both airborne laser scanning (ALS) data acquired from a fixed-wing aircraft and 
spaceborne data from the Geoscience Laser Altimeter System (GLAS), a LiDAR instrument onboard ICESat.  
2 The actual time period to which these 5 rasters refer varies. For example, in Phase 1, the data employed to estimate 
the forest attributes in the surrogate plots are from 2003–2004, and the raster data used as input to select the 4 most 
similar surrogate plots to each 30-m cell to be imputed are from 2007–2009. However, the reference year can ultimately 
be pinned down to the year of the ground data at the base of the modelling chain, which is 2007. The assumption is 
that no significant disturbances occurred in the reference surrogate plots between 2003 and 2009, thus the models fitted 
with 2007 data implicitly account for normal growth and mortality during 2003–2007. 
3 Stand height is the average height (m) of dominant and codominant trees, i.e., with height ≥ Lorey’s height. Lorey’s 
height is the weighted (by cross-section) mean height of all trees with dbh ≥ 5 cm and taller than 1.3 m. 
4 Crown closure (%) is the percentage of the ground that is covered by the vertical projection of tree crowns. 
5 Stand volume (m3/ha) is the total volume (see below) for trees with height ≥ Lorey’s height. 
6 Total volume (m3/ha) is the sum of the volume inside bark of the boles of trees with dbh ≥ 5 cm, from point of 
germination to tree top. It is estimated using species-specific taper equations (v = f(h, dbh)) used by the National Forest 
Inventory. 
7 AGB (t/ha) is the aboveground biomass of live trees with dbh ≥ 5 cm and ≥ 1.3 m tall. It is estimated using the same 
procedure as for total volume but with a set of species-specific equations that can be found in Lambert et al. [80] and 
Ung et al. [31]. 
8 Stand age is the mean age that dominant and codominant trees in the stand had in 1990, which is the start year used 
in carbon flux modelling. Stand age was derived from models relating the mean age of cored trees in MVI ground plots 
with stand height, where the models were directly applied to the stand height raster. 
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crown closure), or indirectly from variables modelled as a function of the GLAS data (for the other 
forest attributes9). 

 
iii. Creation of the surrogate FI plot (reference) dataset: The models developed in ii) are applied to a 

much larger set of GLAS footprints to provide an estimate for the forest attributes at each footprint. 
This larger set is itself a subset of all available GLAS footprints in the region, namely those that passed 
a number of filters based on factors such as acquisition date, terrain slope, and proximity to water or 
other footprints. The centroid of a valid GLAS footprint with its modelled forest attributes is used to 
extract (using bilinear interpolation) and assign the corresponding values of the geospatial features 
used in the k-NN mapping. These cells become the reference dataset (i.e., surrogate 30-m FI plots) used 
in the final step.  
 

iv. k-NN mapping: Finally, each forest attribute is estimated over all forested area10 using a k-nearest 
neighbour (k-NN) algorithm. This algorithm finds the k (in our case, k = 4) most similar reference cells 
to the target cell (i.e., its nearest neighbours in a multidimensional feature space) among those cells 
corresponding to 30-m surrogate FI plots. Similarity is measured as the Euclidean distance in the 
feature space defined by several remote sensing, topographical, and climatic variables that, unlike 
GLAS, are available wall-to-wall across the study area. The estimated value is the mean of those four 
surrogate plots.  

 
Before they can be used, each raster of the SVI needs to be validated, that is, it needs to have its 

accuracy assessed. This report details the materials, methods, and results of the validation of the SVI for 
each phase of the MVI project. 
  

S2. Materials 

The following independent data were used for the assessment (Figure S1):  
 

1. National Forest Inventory (NFI) ground plots: There are 33 NFI ground plots ([80]11) that are treed 
(i.e., with ground-measured crown closure equal to or greater than 10%) in Phase 1 and 47 in Phase 
212. In addition, there are 19 NFI ground plots with a wetland landscape position in Phase 1 and 5 in 
Phase 2 (note that AGB was also computed for the Earth Observation for Sustainable Development of 
Forests (EOSD) wetland-treed class). The NFI ground data were used to derive an estimate of the pixel-
wise bias or mean error (ME = SVI – NFI), mean absolute error (MAE), and root mean square error 
(RMSE) of each of the 5 SVI rasters, plus their respective 95% confidence intervals (CI95). The latter 
can be derived because the NFI, unlike other reference data used in other analyses, is a systematic-
random survey that allows for design-based inference. 

                                                            
9 Stand volume, total volume, AGB, and stand age are indirectly estimated as sole functions of height. Stand age is not 
imputed; instead, the model is directly applied to each forest pixel on the basis of its imputed height. 
10 Whether a raster cell is considered forested depends on its label on the forest type raster, which in reality is the 
landcover map described in section 3.2 of the main manuscript. 
11 For citations numbered 79 or less, please see the reference list in main manuscript. 
12 There were inconsistencies between the NFI forest type assignment and the EOSD. For phases 1 and 2 combined, 18 
conifer plots were non-forested according to EOSD, 4 wetland plots were labelled as wetland shrub by EOSD, and the 
remaining plots were labelled as forest by EOSD although not necessarily the same forest type. We used the stand 
type determined from the NFI tree data (i.e., weighted by basal area). 
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2. GLAS footprints not used in the k-NN imputation: There are just under 6,000 valid GLAS footprints 

(i.e., GLAS footprints that passed the date and topography filters) in Phase 1 and almost 4000 in Phase 
2, which were not used in the k-NN imputation because they were too close (i.e., within the range of 
spatial autocorrelation) to the footprints selected as the reference set for the k-NN imputation. We 
capitalized on these unused footprints to assess the part of the total pixel-wise error that can be 
attributed to the imputation.  

 
3. Boreal transect (BT) ALS point cloud metrics in 25-m cells: The transect was acquired in summer 

2010. It is approximately 750 m wide and runs along 1,800 km in Phase 1 and 950 km in Phase 2 ([40], 
[41]). We used these to estimate an “observed” value of some forest attributes in those cells using the 
Fort Simpson ALS models (S1i). Point cloud metrics for the 25-m cells used as predictors in those 
models were computed using LAStools (http://rapidlasso.com/LAStools).  
 

4. Boreal transect (BT) ALS-derived forest attributes resampled to 150-m cells: To assess how errors 
change as a function of cell size, we resampled the “observed” BT values from 25 m to 150 m by simple 
averaging. 
 

5. GNWT ALS point cloud metrics in 25-m cells: There were 6 ALS datasets acquired in 2010 near the 
Mackenzie Valley highway extending between the southern and northern boundaries of Phase 2: 
 Willow Lake – This dataset is for an area of approximately 36 km2 situated in the southern 

portion of Phase 2 between Fort Simpson and Wrigley. 
 Little Smith – This dataset is for an area of approximately 50 km2 located midway between 

Wrigley and Norman Wells. 
 Big Smith – This dataset is for an area of approximately 18 km2 located just north of Little 

Smith. 
 Great Bear – This dataset is for an area of approximately 25 km2 located near the town of Tulita. 
 Thunder River – This dataset is for an area of approximately 80 km2 located near the 

northernmost boundary of Phase 2. 
 Mackenzie Valley Hwy – This dataset is for a 400 km long transect roughly 1 km wide running 

along the Mackenzie Valley highway between Wrigley and north of Norman Wells. It will be 
used to identify potential differences attributable to latitudinal gradient. 

 
6. Jean Marie, Axe Point, and Behchoko Forest Vegetation Inventories (FVI): These FVIs cover 4,200 

km2, 5,900 km2, and 4,200 km2, respectively. The first two are located in Phase 1, and the third in Phase 
2. These are modern inventories done with softcopy interpretation, so we wanted to assess how they 
compare with our forest attribute rasters.  
 

7. Ground-truthed landcover locations: Forest and wetland reference data collected by aerial survey 
from Ducks Unlimited Canada (DUC) were used as reference data (among other high-resolution 
interpretations and oblique photography) for the accuracy assessment of the Phase 2 landcover map 
(Appendix SA2). These were interpreters’ calls from a helicopter; for forested locations they included 
percent species composition and forest cover density. 

 



www.mdpi.com/article/10.3390/rs14051108/s1 
 

6 
 

 
Figure S1. Location of all independent datasets used for the Satellite Vegetation Inventory validation within 
Phase 1 (darker grey boundary) and Phase 2 (lighter grey) of the Multisource Vegetation Inventory project 
area. ALS, airborne laser scanning datasets; BT, boreal transect; FVI, Forest Vegetation Inventory; GLAS, 
Geoscience Laser Altimeter; NFI, National Forest Inventory. 
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S3. Methods 

S3.0. Assumptions and caveats 

Assuming the true value of a given forest attribute in a given cell could be known for the reference 
year, any difference between that value and the SVI value could be explained by four main sources of error:  
 

a) error due to k-NN imputation (i.e., the observed vs. predicted difference assuming the forest 
attributes from the surrogate FI plots used for imputation were themselves error-free);  

b) error in the GLAS estimate of the attribute (i.e., residual error in the GLAS models assuming 
the “observed value” used to fit the model was error free);  

c) error in the models used to produce a surrogate “observed value” for fitting the GLAS models 
(i.e., residual error in the ALS models, assuming the field measurements were error free), and 
other modelling errors (e.g., in the models relating AGB or volume to height); and  

d) other errors (e.g., spatial and temporal mismatches, errors in ground data, sampling error).  
 

In reality these sources of error are compounded and can hardly be separated, and the true value 
cannot be known, but they provide a framework to interpret the validation analyses, which require the 
following assumptions: 
 

I. For the analyses involving NFI or FVI data, we assume that errors of type (d) are negligible 
(i.e., that the spatial mismatches in the footprint of the data, or the time difference between 
the NFI ground measurement and the reference year of the forest attribute rasters) have no 
impact; and that ground (or photo-interpreted, for FVI) measurements were performed 
and recorded with perfection, in similar forest stands and to the same specifications as the 
forest plots used for modelling. Therefore, we assess errors (a), (b), and (c) combined. 

II. For the analyses involving airborne LiDAR data (BT or GNWT ALS), we assume that errors 
of type (c) and (d) are negligible (i.e., in addition to (d), that the RMSE of the ALS models 
is insignificant; and that for a given cell, different LiDAR datasets will yield the exact same 
point cloud metrics as the LiDAR instrument used for ALS modelling would have yielded 
if flown with the same specs). Therefore, we assess errors (a) and (b) combined. 

III. For the analyses involving unused GLAS footprints, we assume that errors (b), (c), and (d) 
are negligible, hence we assess the error (a) due to the k-NN imputation. 

 
We also note that there was a power issue during the acquisition of the ALS data used in the models 

developed with the 38 ground plots near Fort Simpson [8]. Hence the assumption regarding small residuals 
in the ALS models (b) is only reasonable for stand height, which shows the highest correlation with the 
ALS 95th percentile (Adj R2 = 0.89, RMSE = 1.4 m). For crown closure, the residuals in the ALS model may 
be too high to consider the ALS-predicted value a reasonable “ground truth” from which to assess the k-
NN estimates, because of low energy returns from the ground. Notwithstanding this limitation, k-NN 
imputed crown closure is still assessed with ancillary ALS data, because it may provide information about 
the spatial distribution of errors. 

S3.1. NFI ground plots 

Fifty-two NFI ground plots (400-m2 circular plots where data were collected for all trees with diameter 
at breast height (dbh) ≥ 9 cm, plus a concentric 50-m2 circular subplot where data were also collected for all 
small trees < 9 cm dbh) measured between 2001 and 2004 were used for this assessment in Phase 1, and 52 
measured between 2002 and 2006 were used in Phase 2 [80]. The NFI plot centre coordinates were used to 
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identify the collocated pixel in the SVI raster from which the estimated value for the NFI plot was extracted 
using bilinear interpolation. Out of the 104 NFI plots, 65 were conifer, 6 were broadleaf, 9 were mixedwood, 
and 24 were assigned a landscape position of “wetland,” which corresponds to EOSD class “wetland 
treed.” Note that only AGB estimates were computed for the wetland treed class; therefore, those 24 plots 
(19 in Phase 1 and 5 in Phase 2) were not used in the assessment of the other attributes. The reference value 
in each plot for stand height, stand volume, total volume, and AGB was computed on the basis of NFI 
individual large and small tree data ≥ 5 cm dbh and ≥ 1.3 m in height, in the same manner as for the MVI 
field plots that were used for ALS modelling. For this, we assumed that the proportion and characteristics 
of trees between 5 and 9 cm dbh (which were only measured in the small tree subplot) were the same in 
the rest of the plot; therefore, we applied an expansion factor to the small tree estimates to account for the 
smaller size of the small tree subplot.  

For stand height, stand volume, total volume, and AGB, the signed (SVI – NFI) and absolute 
differences (|SVI – NFI|) were computed between observed (NFI) and predicted (SVI) values, where the 
latter were obtained by bilinear interpolation of the 4 closest SVI pixels to each NFI plot centre. Assuming 
that the impact of temporal (difference between plot measurement year and SVI reference year) and spatial 
(positional errors, different spatial support – 22.6-m diameter NFI plot vs. 30-m SVI pixel) mismatches is 
negligible, these differences can be equated to the pixel-wise signed and absolute pixel-wise estimation 
error in the SVI rasters. The sample mean and its CI95 for the pixel–wise Bias (B) (i.e., ME) and MAE were 
calculated for each forest attribute. Basic descriptive statistics and linear model statistics/coefficients were 
also computed for each NFI/SVI attribute pair, including the p-value for the Breusch–Pagan 
heteroscedasticity test.  

For crown closure, the SVI raster was classified into density classes as defined by NFI ocular calls of 
percent tree cover: sparse (10%–25%), open (26%–60%), and dense (61%–100%). A confusion matrix was 
produced and accuracy estimates were derived following [43].  

The stand age raster was derived from a separate process wherein power functions were employed to 
estimate stand age as a function of stand height (section 3.7 in main paper). In terms of validation, for each 
non-wetland NFI ground plot in phases 1 and 2, the stand age value of the bilinear interpolation of the 4 
closest pixels to the plot centre was compared with the NFI value as for the other attributes.  

S3.2. GLAS footprints 

The reference data used in this assessment were the forest attribute values derived from the GLAS 
models for those valid (i.e., meeting requirements regarding date, topography, etc.), forested GLAS 
footprints that were not used in the k-NN imputation: 4,617 footprints in Phase 1 and 1,621 in Phase 2. The 
k-NN-predicted value of the forest attributes in each footprint was the bilinearly interpolated value of the 
4 closest SVI pixels to the footprint centre. For the “observed” value, GLAS models for crown closure, 
Lorey’s mean height, and stand height were applied to the relevant GLAS metrics (main paper, Table 3), 
and for stand volume, total volume, and AGB, the obtained height value was applied to the field-based 
models that estimated those attributes as a function of stand or Lorey’s height (main paper, Table 4a). For 
each forest attribute, a number of descriptive statistics were computed for the SVI value, GLAS value, and 
signed (SVI – GLAS) and absolute (|SVI – GLAS|) differences. Linear model statistics and coefficients were 
also computed for each GLAS/SVI attribute pair.  

S3.3. Boreal transect ALS Part 1: Comparison of 30-m SVI and 25-m ALS  

Since there was good correspondence between the Fort Simpson and the boreal transect (BT) ALS CI95 
metric (Appendix SA1, Table SA1.1), and despite power issues with the Fort Simpson ALS acquisition that 
affected crown closure estimates, we applied the ALS models for stand height and crown closure (main 
paper, Table 2) to the 25-m BT cells and used the resulting estimates as reference data in this comparison 
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(note that the BT dataset was provided at 25-m cells). Since volume, AGB, and age estimates are a function 
of height, only stand height and crown closure were compared.  

The BT 25-m dataset was filtered to exclude cells that were non-forested, on a slope > 5°, or with stand 
height > 35 m (the latter are outliers representing < 0.01% of the BT). The centroids of the remaining 25-m 
cells were used to point sample (by bilinear interpolation) the 30-m SVI rasters. For each forest attribute, a 
number of descriptive statistics were computed for the SVI value, BT-derived value, and signed (SVI – BT) 
and absolute (|SVI – BT|) differences. Linear model statistics/coefficients were also derived for each BT/SVI 
attribute pair.  

S3.4. Boreal transect ALS Part 2: Comparison of 150-m SVI and 150-m ALS 

The SVI rasters of stand height and crown closure were resampled to 150 m using the mean of the 30-
m cells within (note that 150 is the lowest common multiple to the 25-m BT cells and the 30-m SVI cells). 
The mean BT-derived value of those 25-m BT filtered cells within each 150-m pixel was also computed (see 
item 4 in section S2). Only 150-m cells that had at least 75% coverage with valid, forested BT cells were 
used. Forest type (C: conifer, B: broadleaf, and M: mixedwood) was assigned using the EOSD, where a 150-
m cell was considered pure (C or B) if at least 75% of the forested 30-m EOSD pixels within were C or B, 
otherwise it was set to M (mixedwood). For stand height and crown closure, the signed (SVI – BT) and 
absolute (|SVI – BT|) differences were computed in each forested 150-m cell within the BT. From these two 
parameters some descriptive statistics were derived, as well as linear model statistics/coefficients. 

S3.5. Government of Northwest Territories ALS: Comparison of 30-m SVI and 25-m ALS 

The GNWT ALS datasets were processed with LAStools using 25-m cells. Since there were no forest 
inventory ground data within the extent of the GNWT ALS datasets, we applied the Fort Simpson ALS 
models of stand height and crown closure to these cells. Each ALS dataset was analyzed independently in 
the same manner as the BT, where the datasets were filtered to exclude cells that were non-forested, on a 
slope > 5°, or with stand height > 35 m. The centroids of the remaining 25-m cells were used to point sample 
(by bilinear interpolation) the 30-m SVI rasters. For each forest attribute, a number of descriptive statistics 
were computed for the SVI value, GNWT ALS-derived value, and signed (SVI – GNWT ALS) and absolute 
(|SVI – GNWT ALS |) differences. Linear model statistics/coefficients were also derived for each GNWT 
ALS /SVI attribute pair.  

We hypothesized that the accuracy of the SVI forest attributes would decrease moving northward 
because the forest types would become more ecologically dissimilar to those used in model development 
(i.e., Fort Simpson) and because the GLAS estimates would become less reliable as canopy height decreases 
moving north. To test this assumption, the Mackenzie Valley Highway ALS (hereafter MackHwy) dataset 
was used, which is the dataset with the longest latitudinal gradient, extending from roughly 63.2°N to 
65.8°N latitude (350 km). A section of the BT was also used, which overlaps in latitudinal extent with the 
MackHwy ALS by roughly 150 km and extends further south by 100 km. Both datasets were used to assess 
whether a relationship exists between latitude and stand height, both observed (ALS) and predicted (SVI), 
as well as the mean unsigned relative and absolute difference between SVI and ALS stand heights. For that, 
we randomly selected 500 forest cells in each 25-km interval of latitude we defined, and we plotted the 
mean value of each height metric in one graph per ALS dataset. 

S3.6. Forest Vegetation Inventory 

The Jean Marie (reference year 2003; 420,176 ha forested), Axe Point (2003; 593,500 ha), and Behchoko 
(2011; 336,276 ha) FVI, produced by softcopy interpretation of digital aerial imagery, were selected for this 
analysis. The first 2 are located in Phase 1 and Behchoko is in Phase 2. Since the imagery used to create 
those inventories (2003 and 2011) is close to the reference year (2007 in Phase 1 and 2010 in Phase 2), in the 
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analysis we assumed that the impact of the time difference was negligible. FVI attributes HEIGHT13 and 
CRWNCLOS14 were used to compare SVI estimates of stand height and crown closure, respectively. All 
forested FVI polygons greater than 2 ha, and having at least 50% coverage with forested SVI cells, were 
used for analysis. The mean SVI value within an FVI polygon was used as the value to compare. The mean 
(weighted by polygon size) and other descriptive statistics were derived for the signed (SVI – FVI) and 
absolute (|SVI – FVI|) differences, as well as linear model statistics/coefficients.  

To assess the accuracy of the Phase 1 (circa 2007) and Phase 2 (circa 2010) landcover maps regarding 
forest type (C: conifer, B: broadleaf, M: mixedwood), an error matrix was produced comparing FVI attribute 
TYPECLAS and the EOSD level 4 equivalent. For this, the forest EOSD classes were summarized by FVI 
polygon, and we used the same procedure that we used with the BT 150-m cells to assign a forest type. To 
compare the Behchoko Phase 2 analysis with the separate accuracy assessment of the Phase 2 landcover 
that was carried out with ground-truthed locations (Appendix SA2), a smaller confusion matrix for only 
the conifer, broadleaf, and mixedwood classes was prepared on the basis of those locations and presented 
beside the Behchoko matrix. 

S4. Results and Discussion 

S4.1. NFI ground plots  

 The estimated pixel-wise bias for stand height in Phase 1 was –0.7 m (95% confidence interval CI95 = 
[–2.5, 1.1]), and the mean pixel-wise absolute error MAE was 3.8 m (CI95 = [2.5, 5.0]) (Table S1a). The 
estimated pixel-wise bias for stand height in Phase 2 was –1.5 m (CI95 = [–2.2, –0.8]), and the mean pixel-
wise absolute error was 1.6 m (CI95 = [1.4, 2.6]) (Table S1b). While stand height MAE was lower in Phase 2 
than in Phase 1, in relative terms15, they were similar (26% in Phase 1 and 24% in Phase 2), although the 
confidence intervals of these estimates were wide. Reducing the uncertainty around the error estimates to 
a narrower confidence interval would require a larger sample size of NFI ground plots, which 
unfortunately was not available.  

Assessment of the volume and AGB SVI products provides an indication of how well the k-NN 
estimation and height-based functions fared for these attributes, with the caveat that the reference data 
were not directly measured but rather were obtained from allometric equations based on height and dbh. 
It is unclear whether there was under- or over-estimation for total and stand volume in Phase 1 (Bias CI95 
[–32, 43] for total volume and [–27, 26] for stand volume, both in m3/ha). However, in Phase 2, there was a 
clear overestimation (Bias CI95 = [18, 30] for total volume and [8, 16] for stand volume, both in m3/ha). In 
terms of relative absolute errors, CI95 indicate these errors could be as low as 37% (total volume, in Phase 
1) or as large as 187% (stand volume, Phase 2). AGB tended to be slightly overestimated in Phase 1, with 
an estimated bias of 6 t/ha (CI95 = [–6, 19] t/ha) and MAE of 29 t/ha (CI95 = [20, 39] t/ha). In Phase 2 the 
overestimation bias was greater, with a mean bias of 15 t/ha (CI95 = [11, 20] t/ha), while the MAE was 19 
t/ha (CI95 = [16, 22] t/ha). Similar to the volume estimates, the confidence intervals in Phase 2 indicate that 
the relative absolute error in AGB was somehow larger (MAE CI95 = [90%, 126%]) than in Phase 1 (MAE 
CI95 = [60%, 117%]; this is probably a consequence of the lack of field data in unproductive areas covered 
                                                            
13 FVI attribute HEIGHT is defined as the average height of dominant and co-dominant trees of the leading species 
and is recorded in 1-m increments. Hence, it is not exactly the same as how the SVI defines stand height but is very 
close. 
14 FVI attribute CRWNCLOS is defined as the proportion of ground area covered by vertically projected crowns of 
the tree layer within the polygon (hence the same as in SVI) and is recorded in 10% increments. 
15 Relative to the mean stand height in the relevant NFI plots. Whenever we refer to relative errors in this document, 
they are relative to the mean value of the forest attribute in the reference data, not to the estimated mean value of the 
error metric. 
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by small, sparse black spruce so common in Phase 2. Overall, the prediction of forest structure attributes 
was less accurate in Phase 2 than in Phase 1, which was expected because Phase 2 forests are less 
ecologically similar than those in Phase 1 used for modelling, in particular, the trees are shorter and occur 
on more open stands. This is also consistent with Nelson’s [60] finding that “GLAS measurements become 
problematic with respect to height and AGB retrievals in the boreal forest when AGB values fall below 20 
t/ha and when GLAS 75th percentile heights fall below 7 m.” Both thresholds are close to the mean values 
of these attributes in Phase 2 NFI plots.  
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Table S1. Descriptive statistics (n, number of observations; Min, minimum value across n observations; Max, maximum; Mean; Median; SD, standard deviation; 
CV, coefficient of variation; CI+, upper confidence limit, CI–, lower confidence limit) for the comparison between National Forest Inventory (NFI) ground plots 
and collocated Satellite Vegetation Inventory (SVI) pixels for stand height, total volume, stand volume, aboveground biomass (AGB), and stand age in (a) Phase 1 
and (b) Phase 2, including the pixel-wise signed (∆) and absolute (|∆|) differences and the confidence intervals (CI) of their mean (Bias (B) and mean absolute error 
(MAE), respectively, in bold). NB. The last 5 rows are the statistics for the predicted (x, i.e., SVI) vs. observed (y, i.e., NFI) linear model (y = a + bx): RMSE, root 
mean square error; Adj. R2, adjusted coefficient of determination; slope, b; intercept, a; Breusch-Pagan p-value, if < 0.05, then the residuals are heteroscedastic.  

a) Phase 1 
  Stand height (m) Stand volume (m3/ha) Total volume (m3/ha) AGB (t/ha) Stand age (years) 
Paramete
r NFI SVI ∆ |∆| NFI SVI ∆ |∆| NFI SVI ∆ |∆| NFI SVI ∆ |∆| NFI SVI ∆ |∆| 

n 33 33 33 33 33 33 33 33 33 33 33 33 52 52 52 52 31 31 31 31 

Min 5.0 4.9 
-

14.0 0.2 1.1 11.4 
–

238.1 1.6 2.6 26.0 
–

361.1 9.3 0.3 7.5 
–

182.8 0.7 
44.8 59 –

76.5 
0.3 

Max 
31.
5 

22.
4 8.9 

14.
0 

361.
0 

198.
5 126.5 

238.
1 

545.
3 

278.
7 168.3 

361.
1 

300.
1 

166.
3 97.0 

182.
8 

205.
5 

139 52.8 76.5 

Mean 
14.
5 

13.
8 –0.7 3.8 91.0 90.3 –0.7 51.6 

132.
1 

137.
3 5.2 75.5 59.3 65.7 6.4 29.2 

88.7 91.
3 

2.6 23.
9 

Median 
14.
0 

14.
7 –1.1 2.5 39.6 89.2 6.1 33.3 65.9 

139.
3 22.1 46.5 32.9 44.0 11.0 16.9 

83.3 85 6.3 19.3 

SD 6.9 5.7 5.1 3.5 97.5 61.3 73.8 52.0 
138.

9 82.7 105.7 73.0 67.9 49.1 44.3 33.6 
35.4 23.

4 
30.3 18.8 

CV 0.5 0.4 –7.0 0.9 1.1 0.7 
–

102.5 1.0 1.1 0.6 20.3 1.0 1.1 0.7 6.9 1.2 
0.4 0.3 11.6 0.8 

CI+    1.1 5.0    25.5 70.1   42.7 
101.

4    18.7 38.6   13.9 30.9 
CI–    –2.5 2.5    –26.9 33.1   –32.3 49.6    –6.0 19.9   –8.7 16.9 

RMSE 5.1   72.7    104.2   44.3    
30.9

6     
Adj. R2 0.45   0.41    0.41   0.57    0.23     
Slope 0.8   1.0    1.1   1.1    0.8     

Intercept 3.1   –2.9    –18.0   –9.7    
15.5

2     
BP p-
value 0.07     0.05     0.06     0.01     0.05       



 
b) Phase 2 

   Stand height (m) Stand volume (m3/ha) Total volume (m3/ha) AGB (t/ha) Stand age (years) 
Parameter  NFI SVI ∆ |∆| NFI SVI ∆ |∆| NFI SVI ∆ |∆| NFI SVI ∆ |∆| NFI SVI ∆ |∆| 
n  47 47 47 47 47 47 47 47 47 47 47 47 52 52 52 52 24 24 24 24 
Min  4.5 4.9 –10.1 0.0 0.1 11.3 –34.9 1.2 0.1 24.3 –58.7 7.1 0.2 20.7 –32.1 0.1 38 19 –226.2 1.6 
Max  19.5 11.6 2.5 10.1 75.4 56.9 43.2 43.2 128.3 94.1 73.5 73.5 80.4 66.0 51.5 51.5 295.2 82 41 226.2 
Mean  8.3 6.8 –1.5 2.0 10.1 22.3 12.2 16.2 17.9 41.9 24.0 28.9 17.2 32.6 15.4 18.5 130.3 69.8 –60.5 68.7 
Median  7.5 6.3 –1.3 1.6 3.5 18.4 14.1 15.6 6.9 36.1 24.5 28.5 12.2 29.0 16.9 17.5 122.7 73 –50.7 50.7 
SD  3.0 1.7 2.4 2.0 17.7 11.2 14.2 9.2 28.0 17.1 21.1 13.5 18.7 10.9 15.1 10.9 68.1 11.9 68.6 60.4 
CV  0.4 0.2 –1.5 1.0 1.8 0.5 1.2 0.6 1.6 0.4 0.9 0.5 1.1 0.3 1.0 0.6 0.5 0.2 –1.1 0.9 
CI+     –0.8 2.6    16.4 18.9    30.2 32.9    19.6 21.6   –31 94.8 
CI–     –2.2 1.4    8.1 13.5    17.8 25.0    11.2 15.5   –90.1 42.7 
RMSE  2.8   18.6    31.8    21.4    71.03     
Adj. R2  0.36 0.34   0.42   0.33   0.00   
Slope  1.1 0.9   1.1   1.0   0.25   
Intercept  0.9   –11.1    –27.0    –15.9    113.24     
BP p-value  0.01     0.00     0.00     0.00     0.68       

  



There were not enough NFI plots to provide reliable statistics by forest stand type, but scatterplots of 
NFI vs. SVI for different forest attributes were made, distinguishing stand types (Figure S2). Conifer plots 
tended to be closer to the 1:1 line than broadleaf and mixedwood plots. There was a potential outlier in the 
upper end of NFI values for volume and AGB estimates (NFI plot 1087286). Upon investigation into 
ancillary NFI attributes, the only information that set this plot apart from the other plots was that it was 
experiencing disease at the time of measurement (2003). Although firm conclusions cannot be drawn from 
this information, this plot may have experienced a partial stand-level replacement between 2003 and 2007 
(vintage of other SVI inputs). If this supposition is confirmed by a future ground remeasurement, it would 
provide justification for removing this plot from the analysis. Other plots exhibiting considerable difference 
between predicted and observed values were found to be on gently sloping terrain, or near a landcover 
boundary. 

 

 
Figure S2. Plots of SVI attributes as a function of NFI attributes by forest stand type. NFI, National Forest 
Inventory; SVI, Satellite Vegetation Inventory. 

In Phase 1, homoscedasticity occurred for all attributes with the exception of AGB (p = 0.01) on the 
basis of the Breusch–Pagan test for heteroscedasticity (p = 0.05) (Table S1a). In Phase 2, all attributes 
generated statistically significant p-values with the exception of stand age (p = 0.68), meaning that the error 
variance of the predicted values was not constant across the range of the stand attribute values (Table S1b). 
In general, the scatterplots of NFI vs. SVI indicate that there is a typical trend for SVI to underestimate high 
values of the forest attributes and to overestimate low values, consistent with results reported by Beaudoin 

✕   Phase 1 

+   Phase 2 

−   Conifer 

−   Broadleaf 

−   Mixedwood 

−   Wetland treed 
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et al. [37]. With nearest neighbour techniques such as k-NN, reliable extrapolations are not possible because 
predictions are constrained by the input range of the independent or predictor variables [81]. (Figure S3).  

 
Figure S3. Trend between the difference in SVI–NFI attribute and NFI attribute. NFI, National Forest 
Inventory; SVI, Satellite Vegetation Inventory. 

The crown closure confusion matrix yielded an overall accuracy estimate of 67% in Phase 1 and 51% 
in Phase 2, with three classes (dense, open, and sparse; Table S2). However, the range in the SVI was very 
limited, with 97% of plots classified as open, which together with the small sample size may explain the 
wide 95% confidence interval (the true overall accuracy may have ranged anywhere from 51% to 83% in 
Phase 1 and from 34% to 69% in Phase 2).  
 

 

Table S2. Confusion matrix comparing classified Satellite Vegetation Inventory (SVI) crown closure with 
National Forest Inventory (NFI) density classes in the 40 NFI ground plots in Phase 1 and Phase 2 (first 2 

✕   Phase 1 

+   Phase 2 
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horizontal blocks of the table), and results of normalized error matrix weighted by proportion of SVI density 
class present (last horizontal block of the table). CI95, 95% confidence interval. 

SVI density class 

NFI density 
Phase 1 Phase 2 

Dense Open Sparse Dense Open Sparse 
Dense 0 2 0 0 0 0 
Open 6 21 3 6 23 15 
Sparse 0 0 0 0 0 0 
Overall accuracy 0.67 0.51 
Standard error 0.08 0.08 
CI95 (0.5, 0.8) (0.3, 0.7) 

 
The stand age product for phases 1 and 2 was compared with NFI estimates in 31 plots in Phase 1 and 

24 in Phase 2 (last block in Tables S1a and S1b). For Phase 1 the range of MVI age was within the full range 
of total age values of the NFI plots. There was a slight overestimation bias of 2.6 years; the MAE was just 
23.9 years, and the RMSE was 31.0. For Phase 2 there was a large underestimation bias (61 years) and a 
MAE of 68 years. These poor results reflect the lack of field data in Phase 2 to develop independent stand 
age models for the low-height, unproductive forest stands that were more prevalent than in Phase 1.   

To sum up, the NFI analysis indicates the SVI was relatively accurate for stand height (pixel-wise 
relative MAE ~25%) and less so for the other attributes. In general, there was a trend for SVI to 
underestimate high values of the forest attributes and to overestimate low values, which made relative 
errors worse in Phase 2, where forests of low height and density were more prevalent. We should note, 
though, that these error estimates are conservative (i.e., they are probably larger than the actual error) 
because other factors contributed to the observed differences, namely (i) the time lag between the ground 
measurements and the reference year of the SVI estimates; (ii) compounded positional errors in NFI and 
SVI; and (iii) the discrepancy in the spatial support of both sources (30-m pixels vs. 22.6-m diameter plots). 

 

S4.2. GLAS footprints 

There were 4,617 forested GLAS footprints in Phase 1 and 1,621 in Phase 2 that met the filter criteria 
outlined by Mahoney et al. [8] and that were not used in the k-NN imputation. We used the values of the 
forest attributes estimated directly or indirectly by the GLAS models (main paper, Tables 3 and 4) in these 
footprints as reference data to assess the SVI estimates. The GLAS-based analysis provides an indication of 
the amount of error introduced by the k-NN imputation for each phase assuming the reference data were 
error free. 

There was hardly any bias introduced by the imputation, and the mean absolute differences ranged 
from 10% to 40% of the GLAS-estimated mean value depending on the attribute and phase, demonstrating 
that the k-NN algorithm worked reasonably and consistently well (Tables S3 to S5; percent values not 
shown but can be derived). The root mean squared difference (RMSD) of k-NN-predicted (SVI) vs. 
observed (GLAS) values was high for volume and AGB estimates, indicating the imputation of these 
attributes performed slightly worse than for the other attributes. When comparing the absolute difference 
to the observed mean for a given attribute, percent differences were similar in the two phases (difference 
of < 5 percentage points between phases for all attributes), despite the fact that the predictor variables 
selected for imputation were different for each phase. 



Table S3. Descriptive statistics (n, number of observations; Min, minimum value across n observations; Max, maximum; Mean; Median; SD, standard deviation; CV, 
coefficient of variation) of the comparison between (i) unused valid Geoscience Laser Altimeter (GLAS) footprints and (ii) Satellite Vegetation Inventory (SVI) pixels 
corresponding to their bilinearly interpolated centroids, for stand height and crown closure in phases 1 and 2, including pixel-wise signed (∆) and absolute (|∆|) 
differences). NB. The last 4 rows are the statistics for the predicted (x, i.e., SVI) vs. observed (y, i.e., GLAS) linear model (y = a + bx): RMSD, root mean square difference; 
Adj. R2, adjusted coefficient of determination; slope, b; intercept, a.  

  Stand height (m) Crown closure (%) 
  Phase 1 Phase 2 Phase 1 Phase 2 
Parameter GLAS SVI ∆ |∆| GLAS SVI ∆ |∆| GLAS SVI ∆ |∆| GLAS SVI ∆ |∆| 
n 4146 4146 4146 4146 1309 1309 1309 1309 4146 4146 4146 4146 1309 1309 1309 1309 
Min 3.9 4.1 –13.3 0.0 4.1 4.4 –13.0 0.0 22.0 21.3 –23.4 0.0 22.1 24.0 –41.3 0.0 
Max 31.6 31.0 18.2 18.2 23.4 20.1 12.2 13.0 64.0 64.7 23.0 23.4 71.3 58.2 15.1 41.3 
Mean 9.4 9.3 –0.1 1.8 7.1 6.9 –0.2 1.2 40.5 39.9 –0.6 4.2 37.0 36.2 –0.8 4.3 
Median 7.9 7.8 0.0 1.1 6.4 6.4 0.1 0.7 40.1 39.0 –0.5 3.2 35.5 35.5 –0.1 3.0 
SD 4.6 4.4 2.7 2.0 2.5 1.9 1.8 1.4 8.9 8.0 5.5 3.6 8.2 6.1 6.1 4.5 
CV 0.5 0.5 –36.2 1.1 0.4 0.3 –11.0 1.2 0.2 0.2 –8.7 0.9 0.2 0.2 –7.6 1.0 
RMSD 2.7    1.9    5.5    6.2    
Adj. R2 0.67    0.48    0.63    0.44    
Slope 0.8   0.9   0.9   0.9   
Intercept 1.5     0.8     5.6     4.7     
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Table S4. Descriptive statistics (n, number of observations; Min, minimum value across n observations; Max, maximum; Mean; Median; SD, standard deviation; CV, 
coefficient of variation) of the comparison between (i) unused valid Geoscience Laser Altimeter (GLAS) footprints and (ii) Satellite Vegetation Inventory (SVI) pixels 
corresponding to their bilinearly interpolated centroids, for stand and total volume in phases 1 and 2, including pixel-wise signed (∆) and absolute (|∆|) differences. 
NB. The last 4 rows are the statistics for the predicted (x, i.e., SVI) vs. observed (y, i.e., GLAS) linear model (y = a + bx): RMSD, root mean square difference; Adj. R2, 
adjusted coefficient of determination; slope, b; intercept, a. 

  Stand volume (m3/ha) Total volume (m3/ha) 
  Phase 1 Phase 2 Phase 1 Phase 2 
Parameter GLAS SVI ∆ |∆| GLAS SVI ∆ |∆| GLAS SVI ∆ |∆| GLAS SVI ∆ |∆| 
n 4146 4146 4146 4146 1309 1309 1309 1309 4146 4146 4146 4146 1309 1309 1309 1309 
Min 7.5 8.1 –184.2 0.0 8.2 9.3 –154.4 0.0 18.9 20.1 –236.0 0.0 18.8 20.8 –208.5 0.0 
Max 351.0 341.9 275.4 275.4 202.0 157.5 130.1 154.4 467.4 456.0 347.0 347.0 289.1 230.4 179.9 208.5 
Mean 44.4 45.7 1.3 16.5 24.7 23.6 –1.1 8.0 74.8 76.0 1.2 23.1 45.3 43.7 –1.7 12.2 
Median 27.5 27.8 0.8 7.2 18.7 19.0 0.8 3.8 52.2 52.0 1.0 11.1 36.7 37.1 1.2 6.2 
SD 43.8 44.9 29.3 24.3 18.8 14.4 14.8 12.5 60.8 61.3 39.4 31.9 28.1 21.5 21.7 18.0 
CV 1.0 1.0 22.6 1.5 0.8 0.6 –13.8 1.6 0.8 0.8 33.4 1.4 0.6 0.5 –12.9 1.5 
RMSD 29.3   14.8   39.4 

0.63 
0.8 

15.1  

  21.7   
Adj. R2 0.61   0.40     0.42   
Slope 0.8    0.8       0.8    
Intercept 9.5     5.2         8.3     



Table S5. Descriptive statistics (n, number of observations; Min, minimum value across n observations; Max, maximum; 
Mean; Median; SD, standard deviation; CV, coefficient of variation) of the comparison between (i) unused valid Geoscience 
Laser Altimeter (GLAS) footprints and (ii) Satellite Vegetation Inventory (SVI) pixels corresponding to their bilinearly 
interpolated centroids, for aboveground biomass (AGB) in phases 1 and 2, including pixel-wise signed (∆) and absolute 
(|∆|) differences. NB. The last 4 rows are the statistics for the predicted (x, i.e., SVI) vs. observed (y, i.e., GLAS) linear model 
(y = a + bx): RMSD, root mean square difference; Adj. R2, adjusted coefficient of determination; slope, b; intercept, a. 

  AGB (t/ha) 
  Phase 1 Phase 2 
Parameter GLAS SVI ∆ |∆| GLAS SVI ∆ |∆| 
n 4617 4617 4617 4617 1621 1621 1621 1621 
Min 1.7 1.9 –126.2 0.0 16.7 18.1 –116.1 0.0 
Max 262.6 256.8 181.4 181.4 173.9 142.3 103.4 116.1 
Mean 48.5 48.6 0.1 14.6 33.6 32.7 –0.9 7.3 
Median 36.8 35.8 –0.3 9.0 28.6 29.0 0.7 3.9 
SD 36.8 36.4 22.6 17.2 16.8 12.8 12.6 10.2 
CV 0.8 0.7 227.4 1.2 0.5 0.4 –14.1 1.4 
RMSD 22.6    12.6    
Adj. R2 0.65    0.45    
Slope 0.8    0.9    
Intercept 8.7     4.7     

 
 

The difference in stand height and crown closure for both phases 1 and 2 followed a normal distribution, with the 
mean difference close to zero and more than half of the footprints showing an absolute difference of < 2 m in height or < 
10% in crown closure (Figure S). Plotting the difference between SVI and GLAS values against the GLAS value clearly 
revealed the aforementioned tendency to underestimate the attribute at high values and overestimate it at low values 
(Figure S), consistent with previous studies that reported results from the k-NN algorithm [37]. GLAS footprints 
exhibiting a greater than 100 t/ha difference in AGB were visually inspected, and most were found in heterogeneous 
cover types. Other factors affecting the observed differences between GLAS and SVI included the following: disturbance 
(i.e., road, clear-cut, fire), where the disturbance could have occurred in the period between the GLAS acquisition and 
the date of the datasets used in the k-NN feature space (Figure S, left); and poor GLAS estimation because of sloping 
terrain or variable landcover within (Figure S6, right).  
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Figure S4. Histograms of the difference between SVI–GLAS estimates of (a) stand height (m) and (b) crown closure (%). 
GLAS, Geoscience Laser Altimeter; SVI, Satellite Vegetation Inventory. 

 
Figure S5. The difference between SVI–GLAS estimates as a function of the GLAS estimate for (a) stand height (m) and (b) 
crown closure (%). GLAS, Geoscience Laser Altimeter; SVI, Satellite Vegetation Inventory. 

a) b) 

a) b) 

•   Phase 1 

•    Phase 2 
•   Phase 1 

•    Phase 2 
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Figure S6. Sample GLAS footprints where the absolute difference in aboveground biomass (AGB) between SVI and GLAS 
exceeded 100 t/ha, highlighting potential sources of error. Left: GLAS footprints over a clear-cut and road that may have 
been cleared after the GLAS acquisition. Right: GLAS footprint containing heterogeneous cover type on sloped terrain. 
GLAS, Geoscience Laser Altimeter; SVI, Satellite Vegetation Inventory. 

Stand height and crown closure estimates were analyzed by forest stand type to further understand how the k-NN 
estimation performed by forest type (Tables S6 and Table, respectively). For both stand height and crown closure the k-
NN imputation performed worse in broadleaf and mixedwood stands. These results point at challenges in the estimation 
over broadleaf and mixedwood stands, which could in part be due to the following factors: the varying degrees of 
broadleaf composition between conifer-dominated and broadleaf-dominated stands; low representation of these stands 
in model development; higher volume and AGB values in these stand types, inducing greater underestimation and 
spectral/backscatter saturation; and classification confusion in the landcover product used for stratification.  
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Table S6. Descriptive statistics (n, number of observations; Min, minimum value across n observations; Max, 
maximum; Mean; Median; SD, standard deviation; CV, coefficient of variation) of pixel-wise signed (∆) and absolute 
(|∆|) differences between (i) unused valid Geoscience Laser Altimeter (GLAS) footprints and (ii) Satellite Vegetation 
Inventory (SVI) pixels corresponding to their centroids, for stand height in phases 1 and 2, by forest stand type. 

  Phase 1 Phase 2 
  Conifer Broadleaf Mixedwood Conifer Broadleaf Mixedwood 
  ∆ |∆| ∆ |∆| ∆ |∆| ∆ |∆| ∆ |∆| ∆ |∆| 
n 3401 3401 172 172 573 573 1179 1179 85 85 45 45 
Min –13.3 0.0 –9.3 0.0 –10.5 0.0 –13.0 0.0 –10.6 0.0 –6.1 0.0 
Max 18.2 18.2 16.1 16.1 16.7 16.7 12.2 13.0 4.7 10.6 4.6 6.1 
Mean –0.2 1.6 0.9 2.5 0.2 2.7 –0.2 1.2 0.0 1.1 0.0 1.3 
Median 0.0 1.0 0.4 1.7 0.1 2.0 0.1 0.7 0.1 0.7 0.3 0.8 
SD 2.4 1.8 3.5 2.7 3.8 2.6 1.8 1.4 1.9 1.6 2.0 1.5 
CV –14.3 1.1 3.8 1.1 20.7 1.0 –9.9 1.2 –974.4 1.4 –65.1 1.1 

 

Table S7. Descriptive statistics (n, number of observations; Min, minimum value across n observations; Max, 
maximum; Mean; Median; SD, standard deviation; CV, coefficient of variation) of pixel-wise signed (∆) and absolute 
(|∆|) differences between (i) unused valid Geoscience Laser Altimeter (GLAS) footprints and (ii) Satellite Vegetation 
Inventory (SVI) pixels corresponding to their centroids, for crown closure in phases 1 and 2, by forest stand type. 

  Phase 1 Phase 2 
  Conifer Broadleaf Mixedwood Conifer Broadleaf Mixedwood 
  ∆ |∆| ∆ |∆| ∆ |∆| ∆ |∆| ∆ |∆| ∆ |∆| 
n 3401 3401 172 172 573 573 1179 1179 85 85 45 45 
Min –20.6 0.0 –23.4 0.1 –20.8 0.0 –35.9 0.0 –41.3 0.3 –23.9 0.4 
Max 16.3 20.6 20.8 23.4 23.0 23.0 13.7 35.9 12.9 41.3 15.1 23.9 
Mean –0.9 3.8 –5.2 6.9 2.5 5.6 –0.6 4.1 –4.6 6.5 1.5 5.1 
Median –0.7 3.0 –4.9 5.6 2.4 4.3 0.0 2.8 –4.5 5.4 3.0 3.9 
SD 4.9 3.2 7.0 5.3 6.8 4.5 5.9 4.3 7.4 5.7 6.9 4.7 
CV –5.3 0.8 –1.4 0.8 2.7 0.8 –9.5 1.0 –1.6 0.9 4.5 0.9 
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S4.3. Boreal transect ALS Part 1: Comparison of 30-m SVI and 25-m ALS 

In contrast to what was found in the NFI analysis, stand height underestimation was nil when the reference 
data were derived from the boreal transect (BT) ALS (mean difference of –10 cm for Phase 1 and –40 cm for Phase 2, 
Error! Not a valid bookmark self-reference.). The mean absolute difference was also smaller (3 m in Phase 1 and 1.6 
m in Phase 2, whereas in NFI it was 4 m in Phase 1 and 2 m in Phase 2; Error! Not a valid bookmark self-reference.). 
These seemingly improved results could stem from the fact that the reference data for this comparison were derived 
by applying the same model that is at the start of the chain leading to SVI estimates. Although this model was 
developed with the Fort Simpson ALS dataset, it seems it transferred well to the BT. Indeed, the direct comparison 
of the 95th percentile metric between the Fort Simpson and BT ALS data in areas of overlap revealed a good 
agreement between the 2 datasets (Adj. R2 = 0.93; RMSD = 1.2 m), with a mean difference of 0.1 m, 0.6 m, and 0.5 m 
in conifer, broadleaf, and mixedwood stands, respectively (Appendix SA1).  

By forest type, there was height underestimation in broadleaf and mixedwood stands, as previously observed 
with GLAS, and a negligible overestimation in conifer stands (Error! Not a valid bookmark self-reference.). This 
could also be a consequence of the leaf-off conditions prevalent during the GLAS acquisition available for modelling, 
where the sensor would receive lower energy back from the canopy than in leaf-on conditions (and thus lead to 
lower height estimates). In terms of the linear regression between predicted (SVI) and observed (BT ALS) stand 
height values, the adjusted R2 in conifer stands was double that for broadleaf in Phase 1 and about the same in Phase 
2, while the RMSD was higher in broadleaf for both phases (Error! Not a valid bookmark self-reference.). This 
suggests that the SVI stand height estimates were best for conifer stands 10 to 15 m tall, which were more prevalent 
in Phase 1, while the performance for broadleaf stands was not as good but was more uniform across the project 
area. The histogram of differences (SVI–BT) in stand height followed a symmetric normal distribution (Error! 
Reference source not found.a), and the distribution of stand height values in the SVI was similar to that of BT 
estimates, with SVI exhibiting a slightly narrower range in Phase 1 (Error! Reference source not found.b), and an 
even narrower range in Phase 2, where the majority of the cells had stand height < 10 m (Figure S7c).  

Although the mean differences were minor, particularly in conifer stands, which represented over 70% of the 
forests in the project area, there could be fairly large over- or under-estimation errors in some pixels. When we 
inspected the areas with the largest absolute errors, there appeared to be at least 4 common factors: 

1. heterogeneous landcover 
2. rough terrain 
3. k-NN bias at lower (overestimation) and upper (underestimation) ends of attribute distribution  
4. landcover changes in the period between the 2 datasets 

Areas with heterogeneous landcover (Figure) had a lot of variability in the difference between predicted and 
observed stand height (Figure). The west-central portion of Figurec displayed an area with variable stand height. 
The same area in Figured revealed that the k-NN imputation had a smoothing effect and reduced the variability of 
estimates in that area, thus increasing the absolute differences in sites taller or shorter than the average local site. 
Also, the western portion of Figurea corresponds to a tall stand and the eastern portion to a short stand. The 
corresponding regions in Figuree show that the SVI underestimated the tall stand and overestimated the short stand. 
This example suggests that the SVI estimates may be more reliable in homogenous stands of uniform height.  
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Table S8. Descriptive statistics (n, number of observations; Min, minimum value across n observations; Max, maximum; Mean; Median; SD, standard deviation; CV, 
coefficient of variation) of the comparison between boreal transect (BT) derived values of stand height in 25-m cells and their k-NN counterparts, including pixel-wise 
signed (∆) and absolute (|∆|) differences for (a) Phase 1 and (b) Phase 2. Results are provided both for all cells and broken down by forest type. NB. The last 4 rows are the 
statistics for the predicted (x, i.e., Satellite Vegetation Inventory, SVI) vs. observed (y, i.e., BT) linear model (y = a + bx): RMSD, root mean square difference; Adj. R2, 
adjusted coefficient of determination; slope, b; intercept, a. 

a) Phase 1 
  All Conifer Broadleaf Mixedwood 
  BT SVI ∆ |∆| BT SVI ∆ |∆| BT SVI ∆ |∆| BT SVI ∆ |∆| 
n 1091056 1091056 1091056 1091056 838606 838606 838606 838606 103711 103711 103711 103711 148739 148739 148739 148739 
Min 2.5 3.7 –27.1 0.0 2.5 3.7 –27.1 0.0 2.6 4.0 –26.4 0.0 2.6 4.0 –25.4 0.0 
Max 35.0 31.0 23.9 27.1 34.8 30.8 23.9 27.1 35.0 31.0 23.9 26.4 34.9 30.9 23.6 25.4 
Mean 11.5 11.5 –0.1 3.0 10.0 10.1 0.1 2.6 17.3 16.3 –1.1 4.5 16.4 15.8 –0.6 4.2 
Median 9.5 9.9 0.0 2.0 8.4 8.6 0.1 1.8 17.3 16.6 –1.0 3.7 16.1 15.9 –0.4 3.3 
SD 6.1 5.3 4.1 2.9 4.9 4.5 3.6 2.6 6.1 5.2 5.6 3.5 6.7 5.3 5.4 3.5 
CV 0.5 0.5 –51.5 1.0 0.5 0.4 27.2 1.0 0.4 0.3 –5.3 0.8 0.4 0.3 –9.0 0.8 
RMSD 4.1   3.6    5.7   5.4    
Adj. R2 0.55   0.51    0.27   0.38    
Slope 0.8   0.8    0.6   0.8    
Intercept 1.9     2.1     7.4     4.2     

 
b) Phase 2 

  All Conifer Broadleaf Mixedwood 
  BT SVI ∆ |∆| BT SVI ∆ |∆| BT SVI ∆ |∆| BT SVI ∆ |∆| 
n 415256 415256 415256 415256 391289 391289 391289 391289 7999 7999 7999 7999 15968 15968 15968 15968 
Min 2.6 4.3 –17.1 0.0 2.6 4.3 –17.1 0.0 2.6 4.4 –13.9 0.0 2.7 4.6 –14.3 0.0 
Max 26.6 22.0 11.5 17.1 26.6 21.5 11.5 17.1 24.3 22.0 9.4 13.9 25.6 22.0 9.8 14.3 
Mean 7.6 7.2 –0.4 1.6 7.6 7.2 –0.4 1.6 8.8 7.9 –0.9 2.3 8.3 8.0 –0.3 1.9 
Median 7.2 6.9 –0.2 1.2 7.2 6.8 –0.2 1.2 8.1 7.3 –0.6 1.8 7.7 7.3 –0.2 1.4 
SD 2.4 1.7 2.1 1.4 2.3 1.6 2.1 1.4 3.3 2.6 2.9 2.0 3.0 2.3 2.5 1.7 
CV 0.3 0.2 –5.1 0.9 0.3 0.2 –5.1 0.9 0.4 0.3 –3.3 0.9 0.4 0.3 –7.8 0.9 
RMSD 2.1    2.1   3.1    2.5    
Adj. R2 0.26    0.25   0.27    0.34    
Slope 0.7    0.7   0.7    0.8    
Intercept 2.5     2.5     3.6     2.1     
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Figure S7. Histogram of the distribution in (a) stand height difference, and stand height values between the boreal transect (25 m) and SVI for (b) Phase 1 and (c) 
Phase 2. BT, boreal transect; SVI, Satellite Vegetation Inventory.

a) b) c) 



 

 
 

Figure S8. Effect of heterogeneous landcover on estimates of stand height in a 10-km portion of the boreal transect 
(BT). (a) Worldview 3 true colour composite (2019); (b) forest type; (c) reference stand height based on the BT airborne 

a) 

b) 

d) 

e) 

c) 
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laser scanning (ALS) data; (d) Satellite Vegetation Inventory (SVI) stand height, (e) predicted (SVI) minus observed 
(BT) differences in stand height. 

 

 
 

Figure S9. Effect of rough terrain on estimates of stand height in a 10-km portion of the boreal transect (BT). (a) Landsat 
true colour composite; (b) slope product (CDEM 90 m); (c) BT stand height (25 m); (d) Satellite Vegetation Inventory 

a) 

b) 

c) 

d) 

e) 
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(SVI) stand height; (e) stand height predicted minus observed difference (SVI – BT). Stand height is grossly 
overestimated in high slope terrain. 

Rough terrain is in general troublesome for remote sensing data: GLAS waveforms will be skewed in high slope; 
ALS ground point classification is less reliable, which confounds the resulting percentile metrics; radar backscatter 
is sensitive to variations in local incidence angle, which can cause foreshortening, overlay, and shadows over steeper 
terrain; and optical reflectance data are also sensitive to local incidence angle and will display shadows on north-
facing slopes, resulting in landcover misclassification. Figure  illustrates how the SVI stand height estimate can be 
affected by rough terrain. Forested areas with high slope (>10°) (centre of Figure b) are misrepresented in the SVI 
raster (Figure d) where there is a uniform stand height (roughly 20 m) in comparison with the BT-derived stand 
height (Figure c), which shows variable height estimates. This could be a consequence of the lack of valid GLAS 
footprints in rugged terrain, coupled with the aforementioned effects on the ancillary data used to decide what 
footprints are used in the k-NN imputation.  

For crown closure, the relative differences between SVI and BT were even smaller (13% in Phase 1 and 16% in 
Phase 2, (Table ). The mean difference was very similar between forest types (not shown). The difference in crown 
closure between SVI and BT showed a normal distribution with a slight negative bias (Figure 10a). SVI estimates 
had a narrower range than the BT estimates (Figure b and S10c) and did not reflect denser areas well. It is unclear, 
however, if the denser areas that appear in the BT crown closure estimates are an artifact caused by the power issues 
experienced in the 2007 Fort Simpson ALS survey and propagated by applying the Fort Simpson model to the BT 
ALS. This suspicion was supported when we compared the Lz metric (main paper 4.2) between the Fort Simpson 
and BT ALS datasets in overlapping areas ( 

Figure S4.1; Appendix SA1), which showed a poor relationship between the Lz metric (used to model crown 
closure) of both ALS acquisitions (Adj. R2 = 0.36, RMSE = 0.14). In addition, GLAS prediction of crown closure is not 
as reliable in broadleaf and mixedwood stands (because of leaf-off conditions), which will be propagated to the SVI 
crown closure product. Interestingly, the saturation at high crown closure values in the BT was not as evident in 
Phase 2, presumably because of the actual lack of dense stands in Phase 2. Phase 2 also had an overall narrower 
range in crown closure than Phase 1 (Table ).  
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Figure S10. Histogram of the distribution in (a) crown closure difference, and crown closure values between the boreal transect (25 m) and SVI for (b) Phase 1 and (c) Phase 2. 
BT, boreal transect; SVI, Satellite Vegetation Inventory. 

Table S9. Descriptive statistics (n, number of observations; Mean; Median; SD, standard deviation; CV, coefficient of variation) of the comparison between 
boreal transect (BT) derived values of crown closure in 25-m cells and their Satellite Vegetation Inventory (SVI) counterparts, including pixel-wise signed (∆) 
and absolute (|∆|) differences for (a) Phase 1 and (b) Phase 2. NB. The last 2 rows are the statistics for the predicted (x, i.e., SVI) vs. observed (y, i.e., BT) linear 
model (y = a + bx): RMSD, root mean square difference; Adj. R2, adjusted coefficient of determination.  

  
  

Phase 1 Phase 2 
BT SVI ∆ |∆| BT SVI ∆ |∆| 

n 1091056 1091056 1091056 1091056 415256 415256 415256 415256 
Mean 47.1 43.5 –3.5 6.2 40.3 37.5 –2.8 6.4 

Median 49.4 43.5 –3.9 5.4 40.6 37.1 –3.4 5.7 
SD 9.4 8.3 6.9 4.6 9.5 5.3 7.3 4.5 
CV 0.2 0.2 –1.9 0.7 0.2 0.1 –2.6 0.7 

RMSD 7.7    7.8    
Adj. R2 0.50    0.41     

 
 

c) a) b) 



 

S4.4. Boreal Transect ALS Part 2: Comparison of 150-m SVI and 150-m ALS16 

As expected, the predicted vs. “observed” differences for stand height at 150-m resolution were smaller than those at 30-
m resolution (Table ). The bias remained close to 0, and the mean absolute difference was reduced from 3 m at 30 m to 
2.2 m at 150 m in Phase 1, and from 1.6 m at 30 m to 1.2 m at 150 m in Phase 2. The mutual cancellation of local 
underestimations and overestimations resulted in smaller differences and reduced the range of variation of the pixel-
wise differences at 150 m (Figure S11). As with the comparison at 25-m resolution, the mean difference in stand height 
was worse in broadleaf and mixedwood stands than in conifer stands for Phase 1. The same pattern almost held true for 
Phase 2; however, the small sample size for broadleaf and mixedwood stands precluded a clear conclusion. In terms of 
the linear regression between predicted (SVI) and “observed” (BT ALS) stand height values for 150-m cells, the RMSE 
was lower, the adjusted R2 increased, the slope was closer to 1, and the intercept was lower than the regression for 30-m 
cells. This indicates that at a coarser resolution, pixel-wise accuracy improved as also shown in Beaudoin et al. [37], but 
there was somehow less variability in the predicted (SVI) values at 150 m, and there was also a decrease in the frequency 
of cells at the low and high ends of stand height and a concomitant increase for middle values, in both phases 1 and 2 
(Figure S12). This shift may have been the result of the sporadic occurrence of stand heights < 5 m and > 25 m where 
these estimates got averaged out within a 150-m cell. Choosing a cell size that balances this and other information losses 
(e.g., loss of spatial detail and increased proportion of mixed pixels) against the gains in accuracy would require further 
analysis. 
                                                            
16 Given that volume and biomass estimates are functions of height, the assessments using the boreal transect ALS data only include 
stand height.  Crown closure was not assessed at 150 m because of the ALS power issues described in the previous section.  



Table S10. Descriptive statistics (n, number of observations; Min, minimum value across n observations; Max, maximum; Mean; Median; SD, standard deviation; 
CV, coefficient of variation) of the comparison between boreal transect (BT) derived values of stand height resampled at 150-m cells and their Satellite Vegetation 
Inventory (SVI) counterparts, including pixel-wise signed (∆) and absolute (|∆|) differences for (a) Phase 1 and (b) Phase 2. NB. The last 4 rows are the statistics 
for the predicted (x, i.e., SVI) vs. observed (y, i.e., BT) linear model (y = a + bx): RMSE, root mean square error; Adj. R2, adjusted coefficient of determination; slope, 
b; intercept, a.  

 
a) Phase 1 

  All Conifer Broadleaf Mixedwood 
  BT SVI ∆ |∆| BT SVI ∆ |∆| BT SVI ∆ |∆| BT SVI ∆ |∆| 
n 22303 22303 22303 22303 15569 15569 15569 15569 1365 1365 1365 1365 5369 5369 5369 5369 
Min 4.1 4.6 –18.7 0.0 4.3 4.6 –13.8 0.0 4.3 5.3 –18.7 0.0 4.1 5.0 –17.9 0.0 
Max 32.9 28.5 16.7 18.7 29.1 28.0 16.7 16.7 32.9 28.5 13.3 18.7 32.2 27.5 14.9 17.9 
Mean 11.9 11.8 –0.1 2.2 9.9 10.0 0.1 1.8 17.5 16.6 –0.9 3.4 16.3 15.8 –0.5 3.1 
Median 10.0 10.5 0.0 1.4 8.6 8.8 0.1 1.2 17.2 17.0 –1.0 2.9 15.7 15.7 –0.3 2.3 
SD 5.5 4.9 3.1 2.3 4.1 3.9 2.6 1.9 5.1 4.7 4.3 2.7 5.5 4.5 4.0 2.6 
CV 0.5 0.4 –28.7 1.0 0.4 0.4 29.1 1.1 0.3 0.3 –4.9 0.8 0.3 0.3 –8.2 0.9 
RMSE 3.1    2.6   4.4    4.0    
Adj. R2 0.68    0.63   0.37    0.49    
Slope 0.9    0.8   0.7    0.9    
Intercept 1.1     1.5     6.4     2.7     

 
b) Phase 2 

  All Conifer Broadleaf Mixedwood 
  BT SVI ∆ |∆| BT SVI ∆ |∆| BT SVI ∆ |∆| BT SVI ∆ |∆| 
n 5413 5413 5413 5413 4931 4931 4931 4931 20 20 20 20 462 462 462 462 
Min 4.1 4.8 –8.5 0.0 4.1 4.8 –8.0 0.0 5.7 5.8 –8.4 0.4 4.9 5.3 –8.5 0.0 
Max 20.8 17.5 5.5 8.5 19.1 17.5 5.5 8.0 17.4 12.2 3.3 8.4 20.8 15.4 4.6 8.5 
Mean 8.2 7.8 –0.4 1.2 8.1 7.7 –0.4 1.2 11.8 8.8 –3.0 3.7 8.7 8.3 –0.4 1.5 
Median 7.9 7.5 –0.2 0.9 7.9 7.4 –0.2 0.9 12.3 8.7 –3.0 3.3 8.1 7.8 –0.2 1.2 
SD 2.0 1.5 1.6 1.1 1.9 1.5 1.6 1.1 3.4 1.7 3.4 2.6 2.5 1.9 1.9 1.3 
CV 0.2 0.2 –4.1 0.9 0.2 0.2 –4.1 0.9 0.3 0.2 –1.1 0.7 0.3 0.2 –4.8 0.9 
RMSE 1.7    1.6   4.5    1.9    
Adj. R2 0.35    0.34   0.00    0.45    
Slope 0.8    0.7   0.4    0.9    
Intercept 2.2     2.3     8.1     1.4     



 
Figure S11. Sample boreal transect portion illustrating how the variability and differences seen at (a) 25 m are reduced at 
(b) 150 m. 

a) b) 
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Figure S12. Comparing the distribution in stand height between 25 m and resampled to 150 m: (a) Phase 1 boreal 
transect; (b) Phase 1 SVI; (c) Phase 2 boreal transect; and (d) Phase 2 SVI. SVI, Satellite Vegetation Inventory.

a) b) 

c) d) 



 

S4.5. GNWT ALS: Comparison of 30-m SVI and 25-m ALS 

All Government of Northwest Territories (GNWT) ALS datasets were located in Phase 2 (Figure S1). The bias in 
stand height was more variable (–0.9 m to 0.7 m) than for the Phase 2 boreal transect, but the mean absolute error was 
similar (1.3 m to 2.4 m, Table 1). Much like the findings for the BT dataset, the mean and median were similar between 
a given ALS dataset and the SVI, with the range of SVI much narrower than that of the ALS (with the exception of Great 
Bear). The adjusted R2 values were low (0.4 to 0.2) to very low (< 0.1), indicating poor agreement between the ALS 
estimates and the SVI. There are several possible explanations for this: 

i) Median stand height in most of the GNWT ALS datasets was < 7 m, and low stand height is problematic 
for GLAS stand height prediction.  

ii) No comparison was available between the Fort Simpson ALS and these datasets, meaning that 
transferability of the Fort Simpson ALS model could be an issue. 

iii) There was frequent local variability in the GNWT ALS datasets, a situation where k-NN performs less 
well. 
 

The GNWT ALS datasets were accompanied by 20-cm orthophotos, which enabled us to conduct an additional 
investigation into sources of error. When visually inspecting the spatial locations of high error, we found a similar trend 
to that in the BT, where the highest error occurred in areas of heterogeneous landcover, high slope, disturbance, and 
broadleaf vegetation. Regarding the latter, Figure S13 shows 2 examples of situations that may contribute to larger SVI 
errors in broadleaf areas: broadleaf shrubs may be misclassified as broadleaf forest in the landcover map, causing 
confusion in the k-NN imputation where nearest neighbours in the feature space could be tall broadleaf GLAS footprints 
(Figure S13a); conversely, a broadleaf forest with few standing trees may produce a signature similar to that of GLAS 
footprints where the underestimation error is more severe (Figure S13b) . 

Because of their extended latitudinal range and north–south orientation, we used the Mackenzie Valley Highway 
(MackHwy) and a segment of the BT ALS (dashed portion in Figure S1) to assess whether the difference between 
predicted (SVI) and observed (MackHwy, BT) stand height was a function of latitude. There was a weak relationship 
(adjusted R2 0.05 to 0.41) between latitude and all stand height metrics: observed, predicted, the absolute difference, and 
the percent absolute difference (a) 
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b)  

Figure S14. Relationship between latitude and various stand height metrics (observed, i.e., derived from the ALS; 
predicted in SVI; and predicted minus observed, both absolute and relative) for (a) the Mackenzie Valley highway ALS 
and (b) the BT ALS. Each data point is the mean value of 500 randomly selected forest cells within a 25-km interval of 
latitude centred at the abscissa of the point. P-values for all slopes (slope value shown beside trend line) are significant (p 
< 0.05). ALS, airborne laser scanning; BT, boreal transect. 

). However, all trends showed that both stand height and its associated error significantly decreased with increasing 
latitude. Mean stand height decreases 1.4 to 1.8 m each 100 km we go north, whereas the mean absolute and relative 
errors decrease less, about 70 cm for absolute error and 2.6 percentage points for relative error. This is contrary to our a 
priori assumption that errors would increase with latitude. While the two latitudinal profiles showed a similar trend, 
the MackHwy ALS covered a more productive region than the BT segment and exhibited greater variability in both 
predicted and observed stand height, as well as associated error.  



Table S11. Descriptive statistics (n, number of observations; Min, minimum value across n observations; Max, maximum; Mean; Median; SD, standard deviation; 
CV, coefficient of variation) of the comparison between stand height values derived from different GNWT ALS data in 25-m cells and their SVI counterparts, 
including the mean pixel-wise signed (∆) and absolute (|∆|) differences. NB. The last 4 rows are the statistics for the predicted (x, i.e., SVI) vs. observed (y, i.e., 
ALS) linear model (y = a + bx): RMSE, root mean square error; Adj. R2, adjusted coefficient of determination; slope, b; intercept, a. ALS, airborne laser scanning; 
GNWT, Government of the Northwest Territories; SVI, Satellite Vegetation Inventory. 

  Willow River Little Smith Big Smith Great Bear Thunder River Mackenzie Highway 
  (centre ~62.7°N) (centre ~64.4°N) (centre ~64.6°N) (centre 64.9°N) (centre ~67.5°N) ~(63.2°N to 65.8°N) 
  ALS SVI ALS SVI ALS SVI ALS SVI ALS SVI ALS SVI 
n 41857 41857 47633 47633 9706 9706 36832 36832 32020 32020 359175 359175 
Min 2.5 4.5 2.5 4.4 2.5 4.4 2.5 4.5 2.5 4.4 2.5 4.3 
Max 24.0 19.7 25.8 20.2 26.7 14.7 17.3 22.2 34.9 16.3 27.8 20.8 
Mean 8.8 8.4 7.5 6.6 6.5 6.8 5.0 5.7 6.5 6.1 8.3 7.4 
Median 8.0 8.5 6.9 6.0 6.0 6.2 4.7 5.4 5.9 5.7 6.9 6.7 
SD 3.7 2.1 2.9 1.9 2.5 1.6 1.5 1.0 2.4 1.4 4.1 2.1 
CV 0.4 0.2 0.4 0.3 0.4 0.2 0.3 0.2 0.4 0.2 0.5 0.3 
Mean ∆ –0.3 –0.9 0.2 0.7 –0.4 –0.9 
Mean |∆| 2.4 1.9 1.8 1.3 1.9 2.3 
RMSE 3.2 2.7 2.4 1.7 2.5 3.3 
Adj. R2 0.26 0.29 0.17 0.08 0.05 0.41 
Slope 0.9 0.8 0.7 0.4 0.4 1.2 
Intercept 1.3 2.1 2.1 2.6 4.1 –0.9 
       



 

Figure S13. Investigation into sources of large differences in stand height estimates between the GNWT ALS dataset 
and the SVI: (a) a shrubby area displaying overestimation in heterogeneous broadleaf landcover; and (b) a deciduous 
forest stand with lots of deadfall where SVI underestimated stand height. ALS, airborne laser scanning; GNWT, 
Government of the Northwest Territories; SVI, Satellite Vegetation Inventory. 
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a)  

b)  

Figure S14. Relationship between latitude and various stand height metrics (observed, i.e., derived from the ALS; 
predicted in SVI; and predicted minus observed, both absolute and relative) for (a) the Mackenzie Valley highway 
ALS and (b) the BT ALS. Each data point is the mean value of 500 randomly selected forest cells within a 25-km 
interval of latitude centred at the abscissa of the point. P-values for all slopes (slope value shown beside trend line) 
are significant (p < 0.05). ALS, airborne laser scanning; BT, boreal transect. 
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S4.6. Forest Vegetation Inventory 

The mean SVI estimate of stand height within FVI polygons was in good agreement with the polygon-wise 
stand height in the Jean Marie and Axe Point inventories, both located in Phase 1 (Table a). As with the NFI, stand 
height was underestimated by SVI and the calculated value (–0.7 m when weighted by the area of the polygons) 
was close to the better end of the 95% confidence interval derived from the NFI sample (CI95 = [–3.74, –0.61]). As 
with the BT, the underestimation mostly occurred in tall broadleaf and mixedwood stands. The SVI distribution of 
stand height was much narrower than in the FVI (Figure ), particularly in Phase 2 (Table b). The distribution of the 
difference (SVI – FVI) in stand height showed a small negative bias for Phase 1, which was emphasized in Phase 2 
(Figure a). The negative bias was most likely attributable to the underestimation in tall broadleaf stands, as 
indicated by the larger underestimation error seen in the Jean Marie inventory where these stands are more 
frequent (Figure S16. FVI inventories and respective difference in stand height (SVI – FVI). When the mean 
difference was weighted by polygon size, the differences decreased, indicating that small polygons tend to perform 
worse than large polygons. This is akin to the trend observed in the BT when resampled to 150 m, where a coarser 
resolution (or larger polygon in the case of FVI) will average out local variability and produce a better mean 
estimate.  

The SVI estimate of crown closure showed general agreement with the FVI, with the mean difference worse 
in broadleaf and mixedwood stands for both phases 1 and 2 (Table ). As with stand height, the SVI provided a 
much narrower range in values than the FVI (Figure ), with all values mostly occurring between 30% and 60% 
compared with between 10% and 90% in the FVI. In an attempt to assess classification accuracy according to NFI 
classes, we classified FVI and SVI crown closure according to NFI standards and produced an error matrix. The 
overall accuracy computed was 55%, but 99.9% of all polygons were classified as open according to SVI and 55.7% 
were classified as open in the FVI, which corroborates the SVI problems with dense stands. 

To assess differences between the Jean Marie, Axe Point and Behchoko inventories, the weighted (by polygon 
size) mean signed difference (MSD) and mean absolute difference (MAD) between SVI and FVI estimates were 
compared for both stand height and crown closure (Table ). Differences in crown closure metrics were small among 
all inventories, and the same can be said for MSD in stand height, but for MAD, Behchoko has a smaller MAD than 
the two FVIs in Phase 1, which could be a consequence of Bechoko having less variation in height (coefficient of 
variation CV= 16%) than the other two inventories (CV= 30%).  

 Being more detailed than the SVI, the FVI can be used to assess the accuracy of broad forest stand type (conifer, 
broadleaf, and mixedwood). A forest stand type confusion matrix was produced between SVI and FVI; the results 
showed an overall accuracy of 82% for the SVI in Phase 1 (Table ) and 89% in Phase 2 (Table ). Therefore, the SVI 
provided a fairly good representation of broad forest type at least over the area of these FVIs. When compared with 
the 3-class confusion matrix of Phase 2 based on ground-truthed locations (Appendix SA2, Table SA2.3), overall 
accuracy was lower (83% vs. 89%). This could be explained because the FVI assessment was based on the majority 
label of SVI pixels inside each FVI polygon, and that label tends to coincide more with the reference label when the 
reporting units (polygons) are larger than individual pixels. If this reasoning is correct, the overall accuracy for 
individual pixels in Phase 1, which we could not assess because all ground-truthed locations in Phase 1 were used 
for training, can be expected to be just a few percentage points lower than what is reported for the polygons of the 
Phase 1 FVI inventories, which is still high. 

  



Table S12. Descriptive statistics (n, number of observations; Min, minimum value across n observations; Max, maximum; Mean; Median; SD, standard deviation; 
CV, coefficient of variation) of the comparison between FVI polygons and the mean of the SVI pixels inside them for stand height, including polygon-wise signed 
(∆) and absolute (|∆|) differences for (a) Phase 1 and (b) Phase 2. Mean (Aweight) is the mean weighted by the area of the polygon. NB. The last 4 rows are the 
statistics for the predicted (x, i.e., SVI) vs. observed (y, i.e., FVI) linear model (y = a + bx): RMSE, root mean square error; Adj. R2, adjusted coefficient of 
determination; slope, b; intercept, a. FVI, Forest Vegetation Inventory; SVI, Satellite Vegetation Inventory.  

 
a) Phase 1 

  All Conifer Broadleaf Mixedwood 
  FVI SVI ∆ |∆| FVI SVI ∆ |∆| FVI SVI ∆ |∆| FVI SVI ∆ |∆| 
n 56721 56721 56721 56721 40059 40059 40059 40059 8556 8556 8556 8556 8106 8106 8106 8106 
Min 1.0 4.3 –69.4 0.0 1.0 4.3 –18.9 0.0 1.0 4.4 –17.7 0.0 1.0 4.4 –69.4 0.0 
Max 76.0 24.3 18.0 69.4 32.0 24.3 18.0 18.9 28.0 22.1 14.3 17.7 76.0 22.8 13.7 69.4 
Mean 11.6 10.3 –1.2 3.5 10.5 9.8 –0.7 3.2 14.4 11.6 –2.8 4.1 13.7 11.3 –2.4 4.1 
Mean (Aweight)    –0.7 3.1   –0.2 2.8    –2.6 3.9   –2.2 4.2 
Median 11.0 10.0 –0.7 2.8 9.0 9.5 –0.1 2.6 15.0 12.0 –2.8 3.5 14.0 11.6 –2.4 3.5 
SD 5.6 3.1 4.3 2.8 5.1 2.8 4.1 2.6 6.0 3.6 4.3 3.0 5.8 3.2 4.5 3.0 
CV 0.5 0.3 –3.4 0.8 0.5 0.3 –5.9 0.8 0.4 0.3 –1.5 0.7 0.4 0.3 –1.9 0.7 
RMSE 4.4    4.1   5.1    5.1    
Adj. R2 0.44    0.38   0.51    0.41    
Slope 1.2    1.1   1.2    1.2    
Intercept –0.9     –0.6     0.7     0.3     

 
b) Phase 2 

  All Conifer Broadleaf Mixedwood 
  FVI SVI ∆ |∆| FVI SVI ∆ |∆| FVI SVI ∆ |∆| FVI SVI ∆ |∆| 
n 14772 14772 14772 14772 13891 13891 13891 13891 181 181 181 181 700 700 700 700 
Min 1.0 4.5 –17.6 0.0 1.0 4.5 –17.6 0.0 2.0 5.5 –11.5 0.1 2.0 5.3 –13.1 0.0 
Max 28.0 17.8 7.4 17.6 28.0 14.4 7.4 17.6 21.0 17.8 6.9 11.5 22.0 14.6 6.0 13.1 
Mean 9.9 8.3 –1.6 3.1 9.8 8.3 –1.6 3.1 12.5 9.4 –3.1 3.7 10.9 9.0 –1.9 3.1 
Mean (Aweight)    –0.9 2.2   –1.1 2.8    –2.8 3.4   –1.6 2.9 
Median 10.0 8.2 –1.5 2.6 10.0 8.1 –1.4 2.6 12.0 9.1 –3.2 3.4 11.0 8.9 –2.0 2.7 
SD 4.0 1.4 3.5 2.4 4.0 1.3 3.6 2.4 3.4 2.1 3.1 2.3 3.7 1.5 3.3 2.2 
CV 0.4 0.2 –2.2 0.8 0.4 0.2 –2.3 0.8 0.3 0.2 –1.0 0.6 0.3 0.2 –1.7 0.7 
RMSE 3.9    3.9   4.4    3.8    
Adj. R2 0.22    0.22   0.18    0.20    
Slope 1.4    1.4   0.7    1.1    
Intercept –1.5     –1.8     5.8     0.9     



 
 

Figure S15. Histogram of the distribution in (a) stand height difference, and stand height values between the FVI(s) and SVI 
for (b) Phase 1 and (c) Phase 2. FVI, Forest Vegetation Inventory; SVI, Satellite Vegetation Inventory. 

 

c) 

a) b) 
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Figure S16. FVI inventories and respective difference in stand height (SVI – FVI). FVI, Forest Vegetation Inventory; SVI, 
Satellite Vegetation Inventory. 

 

Jean Marie 

Axe Point 

Behchoko 
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Table S13. Descriptive statistics (n, number of observations; Min, minimum value across n observations; Max, maximum; Mean; Median; SD, standard deviation; 
CV, coefficient of variation) of the comparison for crown closure between FVI polygons and the mean of SVI pixels inside them, including polygon-wise signed 
(∆) and absolute (|∆|) differences for (a) Phase 1 and (b) Phase 2. NB. The last 4 rows in the table are the statistics for the predicted (x) vs. observed (y) linear model 
(y = a + bx). Results are broken down by forest type. Mean (Aweight) is the mean weighted by the area of the polygon. NB. The last two rows are the statistics for 
the predicted (x, i.e., SVI) vs. observed (y, i.e., FVI) linear model (y = a + bx): RMSE, root mean square error; Adj. R2, adjusted coefficient of determination. FVI, 
Forest Vegetation Inventory; SVI, Satellite Vegetation Inventory. 

a) Phase 1 
  All Conifer Broadleaf Mixedwood 
  FVI SVI ∆ |∆| FVI SVI ∆ |∆| FVI SVI ∆ |∆| FVI SVI ∆ |∆| 
n 56,721 56,721 56,721 56,721 40,059 40,059 40,059 40,059 8,556 8,556 8,556 8,556 8,106 8,106 8,106 8,106 
Min 6.0 23.5 –60.6 0.0 6.0 24.0 –58.3 0.0 10.0 23.5 –60.6 0.0 10.0 24.6 –56.2 0.0 
Max 95.0 60.9 46.2 60.6 90.0 60.1 46.2 58.3 95.0 59.9 46.1 60.6 90.0 60.9 44.8 56.2 
Mean 49.0 41.9 –7.2 16.7 46.3 41.2 –5.1 15.6 56.5 43.5 –13.0 21.3 54.5 43.3 –11.2 17.3 
Mean (Aweight)    –2.3 15.6   0.5 14.5    –14.3 21.7   –9.9 16.8 
Median 50.0 42.1 –10.0 15.7 50.0 41.4 –7.1 14.5 60.0 43.8 –18.0 21.4 60.0 43.6 –14.7 16.9 
SD 19.9 5.6 18.5 10.7 19.5 5.4 18.0 10.3 21.3 6.1 20.5 11.6 17.0 5.4 16.5 9.8 
CV 0.4 0.1 –2.6 0.6 0.4 0.1 –3.5 0.7 0.4 0.1 –1.6 0.5 0.3 0.1 –1.5 0.6 
RMSE 19.8    18.7   24.2    19.9    
Adj. R2 0.15    0.17   0.08    0.06     

 
b) Phase 2 

  All Conifer Broadleaf Mixedwood 
  FVI SVI ∆ |∆| FVI SVI ∆ |∆| FVI SVI ∆ |∆| FVI SVI ∆ |∆| 
n 14772 14772 14772 14772 13891 13891 13891 13891 181 181 181 181 700 700 700 700 
Min 10.0 25.6 –48.3 0.0 10.0 25.6 –48.3 0.0 10.0 30.9 –40.9 0.0 10.0 28.9 –41.9 0.1 
Max 90.0 54.5 42.0 48.3 90.0 54.5 42.0 48.3 80.0 51.0 34.8 40.9 80.0 49.4 38.2 41.9 
Mean 39.0 40.5 1.5 16.4 38.4 40.4 2.0 16.3 47.0 42.5 –4.5 18.0 50.4 42.4 –8.0 16.2 
Mean (Aweight)    –8.8 13.0   0.2 16.3    –3.5 19.9   11.6 17.9 
Median 40.0 40.5 –2.0 16.3 40.0 40.3 –1.5 16.3 50.0 43.0 –9.1 18.1 60.0 43.0 –13.2 15.9 
SD 19.7 3.8 19.0 9.7 19.6 3.8 18.9 9.8 21.1 4.1 19.9 9.6 17.4 3.6 16.7 9.0 
CV 0.5 0.1 12.8 0.6 0.5 0.1 9.3 0.6 0.4 0.1 –4.4 0.5 0.3 0.1 –2.1 0.6 
RMSE 19.0    19.0   20.4    18.6    
Adj. R2 0.07    0.07   0.14    0.07     
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Figure S17. Histogram of the distribution in (a) crown closure difference, and crown closure values between the FVI(s) and SVI for (b) Phase 1 and (c) Phase 2. FVI, 
Forest Vegetation Inventory; SVI, Satellite Vegetation Inventory. 

 

Table S14. Weighted (by polygon size) mean value of the polygon-wise signed (∆ = SVI – FVI) and absolute (|∆|) differences between FVI polygons and the mean 
of SVI pixels inside them in stand height and crown closure, by FVI source. FVI, Forest Vegetation Inventory; SVI, Satellite Vegetation Inventory. 

    Stand height (m) Crown closure (%) 
Phase FVI  Parameter ∆ |∆| ∆ |∆| 
1 Axe Point Mean (weight) –0.4 2.8 –4.1 16.2 
1 Jean Marie Mean (weight) –1.0 3.4 0.4 14.7 
2 Behchoko Mean (weight) –0.9 2.2 –0.1 13.0 

 
 
 

c) a) b) 
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Table S15. Error matrix of SVI landcover (EOSD) and FVI polygon attribute TYPECLAS by area (ha) in (a) Phase 1 
and (b) Phase 2. NB. Overall accuracy was computed weighing by the proportion of each class in the corresponding 
phase. EOSD, Earth Observation for Sustainable Development of Forests; FVI, Forest Vegetation Inventory; SVI, 
Satellite Vegetation Inventory. 

 

a) Phase 1 

SVI forest type 
FVI forest type   

Broadleaf Conifer Mixedwood Marginal proportion Overall accuracy 
Broadleaf  23,496 989 2,548 0.068 

0.82 Conifer 17,547 634,472 45,271 0.801 
Mixed 73,071 154,278 61,906 0.131 

 
b) Phase 2 

SVI forest type 
FVI forest type   

Broadleaf Conifer Mixedwood Marginal proportion Overall accuracy 
Broadleaf 31 17 14 0.096 

0.89 Conifer 1,297 310,164 7,154 0.861 
Mixed 383 14,847 2,360 0.043 

 
 

S5. Conclusions 

From all of the analyses presented, it appears that the SVI rasters provide reasonable estimates of all 6 forest 
attributes given the uncertainties associated with the remote sensing data, the propagation of errors at successive 
modelling stages, and the paucity of forest inventory ground data in the region. In particular, the results corroborate 
the well-known limitations of the k-NN algorithm, which tends to narrow the predictive range for all attributes, 
leading to an overestimation of low values and underestimation of high values.  

The probability-based design of the NFI survey allows us to affirm with great (95%) confidence that stand 
height was underestimated by at most an average of 4 m for the 30-m forest cells, but probably by less than a metre 
(given the FVI comparison). Also, the mean pixel-wise absolute error was at most 4 m, or up to 26% of the mean 
stand height in Phase 1, and 24% of the mean height in Phase 2. Overall accuracy for crown closure was better than 
50% when based on 3 density classes (and much better for the most common density class, “open”), with the best 
results being observed in Phase 1 (70% accuracy). The mean pixel-wise absolute error for stand volume, total 
volume, and AGB in Phase 1 was at worst (upper CI95 limit) 77%, 77%, and 65% of the mean value of these 3 
variables, respectively, but it could be as good (lower CI95) as 36%, 38%, and 34%, respectively. In Phase 2, however, 
volume and AGB estimates are less reliable because of difficulties in accurately predicting low values with GLAS. 
For example, the mean pixel-wise absolute errors for stand volume, total volume, and AGB were at most 16 m3/ha, 
33 m3/ha, and 22 t/ha, respectively; however, in percentages relative to the mean value of these 3 variables in Phase 
2, these become 187%, 184%, and 125%, respectively. 

The analysis of unused valid GLAS footprints provided a good understanding of how the k-NN imputation 
influences the estimation of forest attributes. The imputation does not seem to introduce bias to the estimates; 
however, it does lead to underestimation of tall and/or dense stands and overestimation of short and/or open 
stands. The mean absolute differences between k-NN-imputed and GLAS-derived values for stand height, crown 
closure, stand volume, total volume, and AGB were 19%, 10%, 37%, 31%, and 30% of their mean values in Phase 1, 
respectively, and 17%, 12%, 32%, 27%, and 22% of their mean values in Phase 2, respectively. The greater difference 
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observed in volume and AGB suggests that perhaps there is a need for other k-NN feature variables that are better 
related to these attributes. k-NN performed worse in broadleaf stands, which may be due to (i) potential leaf-off 
conditions at the time of GLAS acquisition resulting in lower height estimation by GLAS in these forest types; (ii) 
the low representation of GLAS footprints in broadleaf stands used in the imputation (n = 257 vs. n = 4580 for conifer 
when phases 1 and 2 were combined); (iii) the low occurrence of that stand type in the study area (< 7%); and (iv) 
the higher volume and AGB in these stand types, which would have worsened k-NN underestimation because of 
spectral and backscatter saturation above 100–150 t/ha. Most of the footprints where AGB estimates differed greatly 
(> 100 t/ha difference) corresponded to areas of heterogeneous forest type or near the border of a disturbance (i.e., 
road, clear-cut, water body). This may point out limitations of the k-NN imputation near ecological boundaries or 
in complex forest stands.  

The boreal transect and GNWT ALS datasets provided good insights about the spatial factors affecting the 
accuracy of SVI estimates. As with the GLAS analysis, SVI accuracy was poorer in broadleaf stands, with higher 
underestimation than in other stand types, which again may be related to leaf-off conditions during GLAS 
acquisition, the use of substandard ALS data for model development, or poor transferability of Fort Simpson 
models to alternate ALS datasets. Heterogeneity of landcover affects SVI estimates, where it is expected that SVI 
performs best in homogenous stands of even height and/or crown closure. Estimates in rough terrain are not reliable 
because of the lack of valid GLAS data in those areas, as well as greater variability in the k-NN feature variables in 
steep areas. The importance of using datasets of similar vintage was also highlighted in areas subject to stand-
replacing disturbances, where such disturbances may not be present in all input datasets. 

The SVI estimates for reporting-units larger than a 30-m cell (i.e., in 150-m cells, or in FVI polygons) were on 
average closer to the reference values, but the predictive range was also further narrowed, which may be adequate 
for large homogenous stands but has negative implications in complex multi-story stands or in areas consisting of 
a mosaic of small stands different from each other.  

Overall, the SVI estimates were reasonable for both stand height and crown closure in open, conifer stands, 
which occupy almost 60% of the forested area within the study area. Estimates of all forest attributes were within 
many reported estimates predicted using ALS data [41]. The poorest estimates were for dense broadleaf stands; 
however, they cover < 5% of the forested area within the study area. There was high variability in volume and AGB 
estimates, with decreasing accuracy in low-AGB stands. Although the bias and mean absolute error were lower in 
Phase 2 than in Phase 1, the relative errors were in general larger, and the agreement with the reference datasets 
was spatially inconsistent. Error in Phase 2 is probably attributable to the lower mean stand height found in Phase 
2, which poses challenges for GLAS height estimation. However, the latitudinal trend analysis revealed that 
contrary to expectations, mean error, as well as mean height, decreased significantly with increasing latitude. 

Finally, we note that our error estimates are conservative (i.e., our error estimates are probably larger than the 
actual error) because there are other factors contributing to the observed differences between the SVI estimates and 
the reference data used in our assessments (e.g., temporal and spatial mismatches), which will tend to inflate the 
differences. The limitations outlined above highlight the need for improved forest structure attribute models in less 
represented and/or productive forest stand types. Our results indicate that estimation error will probably be 
reduced by exploring better suited surrogate plots than those from GLAS, especially for short open stands found 
in the more northern reaches of Taiga Plains. Other scaling up techniques, such as random forest or convolutional 
neural networks, appear promising as an alternative to the traditional k-NN imputation. Between 2016 and 2019, 
three ALS surveys were conducted with multispectral LiDAR over a large extent of the study area and covering 
roughly 200 ground plots that were also remeasured in that period. These could be used to develop new ALS 
models with which to populate a large number of surrogate plots along those new transects, which we believe can 
lead to a more accurate, updated Multisource Vegetation Inventory for the Taiga Plains Ecozone.  
 

 

© 2021 by the authors. Submitted for possible open access publication under the terms 
and conditions of the Creative Commons Attribution (CC BY) license 
(http://creativecommons.org/licenses/by/4.0/). 
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APPENDICES 

 
 

APPENDIX SA1. Comparison of point cloud metrics derived from the Fort Simpson ALS and the boreal transect ALS 

Table SA1.1 Descriptive statistics (n, number of observations; Min, minimum value across n observations; Max, 
maximum; Mean; Median; SD, standard deviation; CV, coefficient of variation) between the Fort Simpson (FS) and 
boreal transect (BT) airborne laser scanning (ALS) datasets for 4 variables (95% percentile of points 2 m aboveground, 
stand height, cumulative projected foliage area index (Lz), and crown closure) and their signed (∆) and absolute  (|∆|) 
differences. Only forested cells with a total point count > 100, slope < 5 and valid crown closure values were used for 
comparison. The last 5 rows are the statistics for the predicted (x, i.e., BT) vs. observed (y, i.e., FS) linear model (y = a 
+ bx): RMSE, root mean square error; Adj. R2, adjusted coefficient of determination; slope, b; intercept, a; BP p-value, 
p-value of the Breusch-Pagan test (if < 0.05 then heteroscedasticity is assumed). 

  95th percentile (m) Stand height (m) Lz (unitless) Crown closure (%) 
  FS BT ∆ |∆| FS BT ∆ |∆| FS BT ∆ |∆| FS BT ∆ |∆| 

n 
231
03 

231
03 

231
03 

231
03 

231
03 

231
03 

231
03 

231
03 

231
03 

231
03 

231
03 

231
03 

231
03 

231
03 

231
03 

231
03 

Min 
2.20 2.19 –

6.00 0 2.64 2.63 –
5.76 0 0 0 –

1.77 0 13.3
1 

15.0
1 

–
48.9

4 
0 

Max 
25.8

8 
26.7

1 
11.4

8 
11.4

8 
25.3

7 
26.1

7 
11.0

2 
11.0

2 2.12 0.42 0.24 1.77 75.7
6 

50.6
9 

22.4
7 

48.9
4 

Mean 
10.1

8 
10.2

6 0.08 0.88 10.3
1 

10.3
8 0.07 0.84 0.18 0.17 –

0.01 0.09 37.4
0 

38.1
7 0.77 5.71 

Media
n 9.81 9.46 0.03 0.67 9.95 9.61 0.03 0.65 0.13 0.18 0.02 0.06 37.3

7 
40.6

7 2.07 5.00 

SD 4.50 4.51 1.22 0.85 4.32 4.33 1.17 0.81 0.17 0.10 0.14 0.11 9.48 7.82 7.11 4.31 

CV 
0.44 0.44 15.8

2 0.96 0.42 0.42 15.8
2 0.96 0.98 0.59 

–
14.8

7 
1.16 0.25 0.20 9.23 0.76 

RMSE 1.20    1.16   0.14    6.97    
Adj. R2 0.93    0.93   0.36    0.46    
Slope 0.96    0.96   1.05    0.82    
Interce
pt 0.33    0.34   0.00    6.02    

BP p-
value 0.12     0.12     0.00     0.00     
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Figure S4.1 (a) Histogram showing the distribution of cumulative projected foliage area index (Lz) values in the 
geographic area of overlap between the Fort Simpson (FS) and boreal transect (BT) airborne laser scanning (ALS) 
surveys, and (b) the relationship between FS and BT crown closure in the area of overlap. 

 
  

a) b) 
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APPENDIX SA2. Accuracy assessment of the landcover maps17 

 

SA2.1. Phase 1 accuracy assessment 

  Phase 1 agreement was assessed using 2 GNWT forest vegetation inventories (FVI; Jean Marie River and 
Axe Point) based on a subset of the EOSD level 4 classification schema, namely only those polygons of broadleaf, 
conifer and mixedwood forest type classes. All forested FVI polygons greater than 2 ha and having at least 50% 
coverage with forested EOSD cells were used for analysis. For each candidate FVI polygon the EOSD equivalent 
was considered pure (broadleaf B, or conifer C) if at least 75% of the forested 30-m EOSD pixels within were B or 
C, otherwise it was set to mixedwood (M). The overall accuracy for the 3 forest classes was 84% (Table SA2.1). 
 
Table SA2.1. Contingency matrix of Phase 1 classification with existing Forest Vegetation Inventory (FVI) data for 

conifer, broadleaf, and mixed forest types. 

Map 
prediction 

Validation reference  
(no. of FVI polygons) 

User 
accuracy 

Broadleaf Conifer Mixedwood Total 
Broadleaf 23,496 989 2,548 27,033 87% 
Conifer 17,547 634,472 45,271 697,290 91% 
Mixedwood 73,071 154,278 61,906 289,255 21% 
Total 114,114 789,739 109,725 1,013,578  
Producer 
accuracy 

21% 80% 56%   

Note: overall weighted accuracy (proportional to area): 83.9%. 
 

 

SA2.2 Phase 2 accuracy assessment (level 4) 

  Phase 2 agreement with independent validation locations was assessed through a 25% stratified random 
sample of landcover observations from a spatially extensive network of northern boreal vegetation type and density 
conditions. A total of 954 observations were retained for validation. Following Wulder et al. [83] in the use of vector 
polygons for accuracy assessment of EOSD-LC, accuracy was assessed at the polygon level where a generalized 
landcover dataset was compared with field observations. Specifically, the mode (i.e., majority) of all the landcover 
pixels found within the polygon in which the sample unit was found was compared with validation observations. 
This generalization effectively matches the level of generality associated with the NFI. The original EOSD-LC 
schema was generalized to vegetation type classes without density subclasses (level 4; 9 classes). For forest 
inventory purposes the level 5 wetland treed class was assigned to the generalized level 4 “conifer” class instead of 
the “wetland” class. Overall agreement with field data improved from 51% (circa 2000 EOSD-LC) to 71% using the 
same independent data for validation (Table SA2.2). 
 
 

 

                                                            
17 Natural Resources Canada and Government of Northwest Territories. Monitoring forests in the Northwest 
Territories – Earth Observation for Sustainable Development of Forests (EOSD) landcover updates Phase 1 and 2 
of the Taiga Plains Ecozone. 2017. Data access through the Data Coordinator, NWT Centre for Geomatics: 
gnwtmaps_admin@gov.nt.ca 
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Table SA2.2. Contingency matrix of Phase 2 classification (level 4). 

 
Map 
prediction 

Validation reference (no. of polygons) User 
accuracy Water Exposed Bryoids Shrub Wetland Herb Conifer Broadleaf Mixedwood Total 

Water 67 0 0 0 8 0 0 0 0 75 89% 
Exposed 0 60 0 1 4 0 0 1 0 66 91% 
Bryoids 0 0 44 1 0 0 2 0 0 47 94% 
Shrub 0 1 3 97 30 3 20 5 1 160 61% 
Wetland 0 0 0 6 64 1 30 3 1 105 61% 
Herb 0 0 0 0 2 2 0 1 0 5 40% 
Conifer 0 0 0 15 44 1 272 25 22 379 72% 
Broadleaf 0 1 0 3 6 0 9 29 1 49 59% 
Mixedwood 1 0 0 3 3 0 15 2 23 47 49% 
Unknown 1 7 2 3 0 5 3 0 0 21  
Total 69 69 49 129 161 12 351 66 48 954  
Producer 
accuracy 

97% 87% 90% 75% 40% 17% 77% 44% 48%   

Note: overall weighted accuracy (proportional to area): 70.9%. 
   
  To directly compare the agreement of Phase 1 and Phase 2 with validation data, the level 4 broadleaf, 
conifer and mixedwood classes were retained to also generate a contingency matrix using the treed-only classes of 
level 4. Overall accuracies between Phase 1 and Phase 2 were comparable (84% and 83%, respectively; Tables SA2.1 
and SA2.3). For both phases the conifer class was classified with the highest producer (80%–92%) and user (85%–
91%) accuracies among the generalized level 4 treed classes. Overall agreement with field data improved from 78% 
(circa 2000 EOSD-LC) to 83% using the same independent data for validation (Table SA2.3). 
 

 Table SA2.3. Contingency matrix of Phase 2 classification for conifer, broadleaf, and mixedwood forest types. 

Map 
prediction 

Validation reference  
(no. of polygons)  

User 
accuracy 

Broadleaf Conifer Mixedwood Total 
Broadleaf 29 9 1 39 74% 
Conifer 25 272 22 319 85% 
Mixedwood 2 15 23 40 58% 
Total 56 296 46 398  
Producer 
accuracy 

52% 92% 50%   

Note: overall weighted accuracy (proportional to area): 83.4%. 

 

SA2.3. Phase 2 accuracy assessment (level 2) 

  Phase 2 agreement with independent validation locations was determined through a 25% stratified random 
sample of landcover observations, using a method similar to that described in Section SA.2.2. The original EOSD-
LC schema was generalized to broad landcover type classes (level 2; 2 classes). For forest inventory purposes all 
level 5 treed classes were assigned to the generalized level 2 “treed” class, with all other classes assigned to level 2 
“non-treed”. Overall agreement with field data improved from 74% (circa 2000 EOSD-LC) to 86% using the same 
independent data for validation (Table SA2.4). 
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Table SA2.4. Contingency matrix of Phase 2 classification (level 2). 
 

Map 
prediction 

Validation reference (no. 
of polygons) 

User 
accuracy 

Nontreed Treed Total  
Nontreed 397 61 458  87% 
Treed 74 401 475  84% 
Unknown 18 3 21   
Total 489 465 954   
Producer 
accuracy 

81% 86%    

Note: overall weighted accuracy (proportional to area):  85.5%. 
 

SA2.4. Phase 2 Accuracy Assessment (level 5) 

  Phase 2 agreement with independent validation locations was assessed through a 25% stratified random 
sample of landcover observations using a method similar to that described in Section SA.2.2 albeit for the original 
EOSD-LC class schema (vegetation type classes with density subclasses). Overall agreement with field data 
improved from 28% (circa 2000 EOSD-LC) to 50% using the same independent data for validation (Table SA2.5). 
 
Table SA2.5. Contingency matrix of Phase 2 classification (level 5). 
 

Map 
prediction 

Validation reference (no. of polygons) User 
accuracy 

(%) 
Water Rock Exp Bryd   S-

T 
S-
L    

WT-
T 

WT-
S    

WT-
H   

Herb   Con-
D   

Con-
O     

Con-
S 

Brl-
D   

Brl-
O     

Mix-
D 

Mix-
O 

Total 

Water 67 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 75 89 
Rock  0 20 5 0 1 0 0 0 1 0 0 0 0 0 1 0 0 28 71 
Exp  0 0 35 0 0 0 0 0 3 0 0 0 0 0 0 0 0 38 92 
Bryd              0 0 0 44 0 2 0 0 0 0 0 0 2 0 0 0 0 48 92 
S-T 0 0 0 0 15 3 1 1 1 0 0 0 1 1 3 0 0 26 58 
S-L             0 0 1 3 13 67 8 20 9 3 1 1 8 1 1 0 1 137 49 
WT-T  0 0 0 0 4 4 21 4 4 1 3 12 12 7 2 0 2 76 28 
WT-S       0 0 0 0 1 3 12 32 4 0 1 3 4 3 0 0 1 64 50 
WT-H    0 0 0 0 1 0 3 4 27 1 6 3 0 0 0 0 0 45 60 
Herb              0 0 0 0 0 0 0 2 1 2 0 0 0 1 0 0 0 6 33 
Con-D   0 0 0 0 0 0 4 1 3 0 29 14 0 0 0 4 0 55 53 
Con-O     0 0 0 0 1 4 11 5 10 0 34 44 7 10 2 5 5 138 32 
Con-S 0 0 0 0 0 1 17 6 7 0 1 24 33 1 2 2 2 96 34 
Brl-D   0 1 0 0 1 0 0 2 1 0 2 4 1 18 3 0 1 34 53 
Brl-O       0 0 0 0 2 0 0 1 1 0 0 1 2 4 4 0 1 16 25 
Mix-D 1 0 0 0 0 0 2 0 3 0 5 1 0 1 0 9 4 26 35 
Mix-O     0 0 0 0 3 0 3 0 0 0 2 4 1 1 0 1 10 25 40 
Unknown 1 6 1 2 0 3 0 0 0 5 0 0 3 0 0 0 0 21  
Total 69 27 42 49 42 87 82 78 83 12 84 111 74 48 18 21 27 954  
Producer 
accuracy 
(%) 

97 74 83 90 36 77 26 41 33 17 35 40 45 38 22 43 37   

Note: overall weighted accuracy (proportional to area): 49.5%. 
Landcover classes: Exposed (Exp), Bryoids (Bryd), Shrub Tall (S-T), Shrub Low (S-L), Wetland Treed (WT-T), Wetland Shrub 
(WT-S), Wetland Herb (WT-H), Conifer Dense (Con-D), Conifer Open (Con-O), Conifer Sparse (Con-S), Broadleaf Dense (Brl-
D), Broadleaf Open (Brl-O), Mixedwood Dense (Mix-D), Mixedwood Open (Mix-O). 
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