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1. Coral Bleaching Data Filtration  

 

Figure S1. Distribution of coral bleaching data from survey records, given as estimations of the 

maximum (main) and minimum (inset) percentage. To compute binary bleaching data, the absence of 

bleaching was defined as having a maximum estimation of 10 % bleaching or less (see main, blue 

bars), while the presence of bleaching was defined as having a minimum estimation of 20 % or 

greater (see inset, red bars). Records in between were filtered out of the database to avoid 

misclassifications (grey bars). 
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2. Model Validation 

 

Figure S2. Comparison of residual correlation (large-scale spatial, small-scale spatial, and temporal) 

for a basic Generalised Linear Model (GLM) (red) and a spatiotemporal GLM (blue). Both GLMs 

were fit in the form: Bleaching ~ DHWop. Note lower spatial and temporal autocorrelation in model 

residuals for the spatiotemporal GLM. 
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3. Patchiness Simulation Test 

Aims 

It is well-known that patchy data can cause biased estimates of model parameters, for example, the 

slope, intercept and standard error of a linear regression (Bihrmann and Ersbøll 2015). These biases 

can also extend to model comparison criteria such as Akaike Information Criterion (AIC) or Deviance 

Information Criterion (DIC) used in this study (Nakagawa and Freckleton 2008). Although we 

employed the most extensive global coral bleaching dataset available, observations were not 

distributed consistently through space and time. Observations were limited to the location of coral 

reefs, with more observations in recent years and on the more accessible reefs, and no observations 

for some geographical regions in certain years (mostly due to an absence of bleaching). Therefore, to 

validate this study of optimising heat stress metrics using Bayesian Generalised Linear Models 

(GLMs), we also needed to address model biases relating to patchy data, or as we refer to, patchiness.  

Methods 

To address potential bias due to patchiness in the coral bleaching dataset, we have performed a 

simulation test across four patchiness scenarios: a regular grid, a spatially patchy grid, a 

spatiotemporally patchy grid, and the true level of patchiness (i.e. actual bleaching survey sites). The 

overall aim was to assess whether patchiness affected the outcome of the Bayesian GLMs presented in 

this study. This simulation test was performed for each patchiness scenario independently, with the 

same methodology. For clarity, we describe this step-by-step workflow for the regular-grid scenario 

only, aided by a conceptual diagram (Fig. S1): 

1. An INLA GLM (the “true model”) was fitted to bleaching observations based on one DHWtest 

metric (threshold = MMM + 1 ⁰C, window: 12-weeks) and the spatiotemporal random effect. 

The same model settings were applied here, as in the main manuscript models, except a 

coarser mesh was defined to improve runtime (maximum triangle edge length = 4000km, 

convex hull = -0.06). This translates to 193 nodes per timestep, which exceeds the 
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recommended minimum value of 100 nodes per timestep (Bakka et al. 2018).  

 

2. To facilitate the simulations, 1000 sets of parameters (β0, β1, Ω, ρ) were randomly sampled 

from their posterior distributions in the “true model”. 

 

3. Aside to this, a regular grid of points bounding all observations in the study area was defined 

(250 × 250, N = 62,500). DHW values from observed coordinates in each year were 

interpolated to the regular-gridded coordinates in each corresponding year using nearest 

neighbour interpolation in R (gstat library), where a maximum of 1000 neighbours are used 

for interpolations at any given point. 

 

4. Using each of the 1000 sets of parameters from Step 2, 1000 sets of bleaching data were 

simulated from the regular DHW grid. This was achieved by feeding all relevant parameters 

into equation 8 in the original manuscript to get values of πt,i. Then following equation 5 in 

the original manuscript (rbinom function in R) values of πt,i are then converted to Bernoulli 

draws (1 or 0, i.e. the simulated bleaching dataset). Given that each of the 1000 simulated 

bleaching dataset were based on the same interpolated DHW values, the only variations 

among them were due to the random sampling of model parameter values (β0, β1, Ω, ρ). 

 

5. New INLA GLMs (or “test models”) were fitted to the 1000 simulated datasets 

independently, as in Step 1. This produced a set of new parameter estimates (β0, β1, Ω, ρ) for 

each “test model”.  

 

6. The posterior means of model parameters were then compared between the “true model” (Fig. 

S1, blue diamond) and the “test models” (Fig. S1, histogram and 95% CI). If patchiness is not 

a computational issue for the simulated dataset then the “true model” parameter should lie 
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within the 95% confidence intervals of the 1000 “test model” parameters. Since this study is 

focused on bleaching and heat stress, we evaluated each simulation using β1, the DHW 

parameter. 

Figure S3. Conceptual workflow of the patchiness simulation test. A “true model” (spatiotemporal 

Generalised Linear Model in INLA) is built on observed bleaching and DHW data (blue colours), and 

is used to estimate posterior distributions for each model parameter (β0, β1, Ω, ρ). By combining 1000 

sets of “true model” parameters with a regular grid of interpolated DHWs, corresponding bleaching 

values can be simulated for each interpolated DHW dataset (dark grey colour). Then “test models” 

can be fitted to each of these simulated datasets (light grey colour). The posterior means of estimated 

model parameters are then compared between the “true model” (blue diamond) and the “test models” 

(histogram and 95% confidence interval). 

The other three patchiness scenarios (spatial, spatiotemporal, and true) were tested in the same way as 

described above with alterations to Step 3 (i.e., how the DHW grid was formed). The spatially patchy 

grid was derived from the regular grid, whereby all DHW datapoints were removed from areas that 

had no true observations (Fig. S2, West African coast, South America, and other points on land, etc.). 

The spatiotemporally patchy grid was derived from the spatially patchy grid, whereby DHW 



Supplementary Materials 

6 
 

datapoints from each year were randomly removed following the temporal distribution of bleaching 

observations (Fig. S2). Finally, the true patchiness scenario utilised the coordinates of bleaching 

observations and true DHW values (Fig. S2). 

Results and Conclusion 

For all four scenarios of patchiness, the β1 parameter estimate from the “true model” (c.f. Step 1) is 

within the 95% confidence intervals of β1 parameter estimates from “test models” (Fig. S3). This 

shows that patchiness did not have an impact on R-INLA’s computational ability to estimate model 

parameters. Based on this fact, we conclude that the level of patchiness seen in this bleaching dataset 

is within the levels accommodated by R-INLA. This validates the assumption that there are no model 

biases based on the levels of patchiness (data gaps) seen in this dataset. 
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Figure S4. Dataset structure across a gradient of patchiness with four distinct scenarios: a regular grid 

of interpolated DHW values (left), a spatially patchy grid (middle left), a spatiotemporally patchy grid 

(middle right), and the true patchiness scenario with true DHW values (right). Each facet represents 

the same bounding box on a world map that surrounds all bleaching observations. Data is shown for 

each year from 2003 to 2017. 

 

Figure S5. The results of the patchiness simulation test are shown for each patchiness scenario (as in 

Fig. S4), based on the mean of the β1 parameter posterior distribution (i.e., DHW parameter). In each 

case, the “true” β1 parameter estimate (blue diamonds) is within the 95% confidence intervals of the 

“test” β1 parameter estimates (histograms). 
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4. Best-performing Spatiotemporal GLM example - Estimated Posterior Distributions 

  

 

Figure S6. Posterior distributions of model parameters for one of the best performing Generalised 

Linear Models (Bleaching ~ DHWtest-0C-8wk using HotSpot threshold of MMM + 0 ⁰C and 

accumulation window of 8 week). Fixed effects (upper) and random effects (lower – spatiotemporal 

correlation) are shown. There is a clear positive association between heat stress (DHWtest-0C-8wk) and 

coral bleaching. The range up to which spatial correlated random effect are correlated is 

approximately 600 km (i.e. drivers other than heat stress). Moderate positive temporal correlation is 

apparent from the rho value (AR1 parameter) of 0.62, meaning model error in one year is likely to be 

similar to the previous year. 
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5. Best-performing Spatiotemporal GLM example - Spatiotemporal Correlation 

 

Figure S7. Gaussian Markov random fields through time for one of the best performing Generalised 

Linear Models (Bleaching ~ DHWtest-0C-8wk using HotSpot threshold of MMM + 0 ⁰C and 

accumulation window of 8 week). GMRF values (vt,i) show the strength of the spatiotemporally 

correlated random effect (i.e. drivers of bleaching other than DHW) at location i in year t.   
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