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Supplement to section 2: Materials and Methods 
2.1. SAFY_swb and the Ensemble Kalman Filter Data Assimilation Method  

The assimilation scheme proposed in this paper is summarized in Error! Reference 
source not found.. 

 
Figure 1. Simplified diagram of the EnKF-SAFY_swb assimilation algorithm. 

2.1.1. SAFY-swb 
Simple Algorithm For Yield (SAFY) [1] is a crop growth model mainly driven by the 

photosynthetically active solar radiation absorbed by plants (APAR). It is an application 
of the Monteith’s concept [2], which describes the daily growth of dry aboveground bio-
mass (DAM) as a function of the incoming global radiation (Rg) and Leaf Area Index (LAI) 
, as shown in Equations (1) and (2).  

∆𝐷𝐴𝑀(𝑖) = 𝑅 (𝑖) ∙ 𝑅2𝑃 ∙ 𝜀 (𝑖 − 1) ∙ 𝐸𝐿𝑈𝐸 ∙ 𝐹  
Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed 

under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/li-

censes/by/4.0/). 

(1)

Where R2P is the global to incoming photosynthetically active radiation (PAR), εI is 
the light interception efficiency (expressed in Equation (2)), ELUE (expressed in [g·MJ−1]) 
is the light use efficiency, and FT is a temperature stress function [21].  

The light interception efficiency is represented as follow:  𝜀 (𝑖 − 1) = 1 − 𝑒 ∙ ( ) (2)

Where k is the light interception coefficient and LAI is the Leaf Area Index.  
FT is expressed as follow: 
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𝐹 =
⎩⎪⎨
⎪⎧ 1 − 𝑇 − 𝑇𝑇 − 𝑇  𝑖𝑓 𝑇 < 𝑇 <  𝑇  

1 − 𝑇 − 𝑇𝑇 − 𝑇  𝑖𝑓 𝑇 > 𝑇 >  𝑇0  𝑖𝑓 𝑇 <  𝑇  𝑜𝑟 𝑇 >  𝑇
 (3)

Where: Ta = air temperature, Topt=optimal temperature for crop functioning, Tmin and 
Tmax=extreme temperature values for crop functioning. 

The dynamics of leaf area index (LAI) is simulated from the balance between leaf 
extent during growth ( ∆𝐿𝐴𝐼+, 𝑒𝑞. 4 ) and leaf disappearance during senescence 
((∆𝐿𝐴𝐼−, 𝑒𝑞. 6)). These two phenological phases are identified based on a degree-day ap-
proach from accumulated air temperature (thermal time ΣTa). During growth, the aerial 
phytomass production is distributed into leaf and non-leaf mass according to the partition 
function PL, then the increase of leaf mass is converted in in- crease of leaf area ((∆𝐿𝐴𝐼 +,) 
according to the value of the specific leaf area (SLA). This leads: ∆𝐿𝐴𝐼+= ∆𝐷𝐴𝑀 ∙ 𝑃 ( 𝑇 ) ∙ 𝑆𝐿𝐴 (4)

Where 𝑃  is an empirical function of two parameters, PLa and PLb [21], and it is ex-
pressed as follow: 𝑃 𝑇 = 1 − 𝑃 ∙ 𝑒 ∙∑  (5)

The senescence of leaves starts when accumulated air temperature has reached a 
given threshold (STT). It increases with thermal time at a rate determined by the Rs pa-
rameter. It ends when LAI has returned to a value lower than the initial one, indicating 
total senescence. This leads to: ∆𝐿𝐴𝐼−= 𝐿𝐴𝐼 ∙ ∑ 𝑇 ∙ 𝑆 /RS (6)

A detailed description of SAFY algorithms is provided by [1]. 
Previous studies [3–7] have proved the efficiency of this model in estimating the pro-

duction of different crops, especially when implemented with estimated LAI measure-
ments obtained from EO data. This is due to the simplicity of the model, a feature that 
makes it particularly suitable for use in synergy with EO data. 

SAFY has been modified by [4]. The authors introduced a soil water balance to sim-
ulate root water uptake and crop water stress dynamics. In that version the soil profile is 
represented as a five layers soil, with a depth for each soil (from top to bottom) respec-
tively of: 10 cm, 25 cm, 50 cm, 100 cm and 150 cm. For each soil layer the water balance is 
calculated for each day of the crop cycle. Following the changes made by [4], Equation (1) 
becomes: ∆𝐷𝐴𝑀(𝑖) = 𝑅 (𝑖) ∙ 𝑅2𝑃 ∙ 𝜀 (𝑖 − 1) ∙ 𝐸𝐿𝑈𝐸 ∙ 𝐹 ∙ 𝑊𝑆𝑇(𝑖) (7)

where 𝑊𝑆𝑇(𝑖) is a daily function expressed as the ratio of actual and potential plant 
transpiration, which proportionally affects (decreases) the daily biomass accumulation. 
WST represents the daily water stress to which the crop is exposed, and it is a function of 
the water balance, in turn a function of precipitation, runoff, drainage, and evapotranspi-
ration.  

Evapotranspiration (ET) is an important component of the water balance and it is 
composed of soil evaporation and plant transpiration. In the SAFY version proposed by 
[4] ET contribution to the soil water balance is considered separately. The Potential ET 
(PET) is initially calculated using the Priestley-Taylor, while potential plant transpiration 
(PTrsp) and potential soil evaporation (PESoil) are calculated as functions of LAI and PET. 
The actual soil evaporation (AESoil) is calculated as a function of soil water balance, and 
finally actual plant transpiration is calculated as a function of potential root water uptake. 
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A more detailed explanation of the changes made to SAFY that introduces the water bal-
ance, is provided by [4]. The changes made by [4]ensure that the daily biomass increase 
(Equation (7)) is strictly linked to two biophysical variables that can be measured by EO 
data: LAI and ET. 

In the present study, some small changes have been made to the version of SAFY 
presented by [4]. In this case, the quantity of water supplied through irrigation was in-
cluded in the calculation of the water balance. Additionally, the evaluation of potential 
evapotranspiration was calculated using the Penman-Monteith instead of the Priestley-
Taylor equation used by [4]. Actually, in the current implementation, the reference evap-
otranspiration (ET0) was calculated using ET0 Calculator, a software developed by FAO 
[9], from which PET was obtained using an appropriate specific crop coefficient, as sug-
gested by [9]. Thus ET0 becomes one of the input meteorological variables of SAFY, PET 
is calculated only according to the selected crop, thus avoiding the repetition of the calcu-
lation at each single run of the model. Hereafter we will refer to the SAFY model used in 
this study (based on the version proposed by Kang and modified as previously described) 
as SAFY_swb. 

2.1.2. Ensemble Kalman Filter Method Assimilation 
The DA scheme used in this work for SAFY_swb, hereafter called EnKF-SAFY_swb, 

is based on the method developed by [13].  
The EnKF algorithm developed for SAFY in this work is based on the theory of [3] 

,which considers the observations as random variables, therefore adding random pertur-
bations to the observed values. It is possible to divide the assimilation algorithm into the 
following steps: 

1. Generation of an ensemble of n = 200 vectors, each one containing the values of 
the i parameters Pi, in this case i = 1, 2, . . . , 9. To each element, corresponding to 
a nominal parameter value, an error value was added, randomly drawn from a 
truncated normal distribution N(0, 1), with lower and upper limits. 

2. Simulations with the SAFY model in order to obtain a value of LAI for each ele-
ment of the ensemble at the date when the first satellite image was acquired. An 
error ε is added to the simulated LAI values. This error ε was randomly generated 
from a normal distribution N(0, Q), in which the standard deviation Q was arbi-
trarily chosen as 20% of the LAI value, to take into account the uncertainty of the 
model. In this way a matrix φt1 was defined: 

𝜑 = 𝐿 𝐿 … 𝐿𝑃 𝑃 … 𝑃… … …  …𝑃 𝑃 … 𝑃  (8)

where each column is an element of the ensemble and represents a random configu-
ration of the model using parameters Pi and the corresponding LAI value obtained Ln at 
the time t1 of the first satellite acquisition. 

3. Generation of the vector Mt1, where each element is composed by the LAI ob-
served at time t1, i.e., retrieved from remote sensing data, plus an error 𝜏  drawn 
from N[0, var(𝜏  )], where var(𝜏  ) is a variance expressing the measurement 
error, which in our case was inferred from the comparison of the LAI values esti-
mated from remote sensing, with the ground measurements.  

4. Computation of the variance-covariance matrix of 𝜑  for the 100 ensemble ele-
ments. 

5. Calculation of the Kalman gain using the variance-covariance matrix: 𝐾 = ∑ 𝑅𝑅 ∑ 𝑅 +  var(𝜏  ) (9)
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Where: R = (1,0,…,0) with number of elements equal to the number of ensemble ele-
ments. 

6. Update 𝜑  of as follows: 𝜑 , = 𝜑 + 𝐾 (𝑀 − 𝑅𝜑 ) (10)

Where j is the jth column of 𝜑 . 
7. Replacement of LAI and parameters values (the elements of𝜑 ) with those calcu-

lated at step 6 (the elements of 𝜑 , ). 
8. Repetition from step 3 for each satellite observation date. When the last observa-

tion has been assimilated, SAFY runs to the end of the crop growth cycle and out-
puts the yield. 

 
The biophysical variable assimilated is the LAI. In a first evaluation step, LAI was 

calculated from synthetic data to evaluate the assimilation efficiency of the method (see 
section 2.2). Subsequently it was estimated from EO data acquired by MSI (the multispec-
tral instrument on board of Sentinel-2) and processed using the SNAP module for LAI 
assessment [44] (more details in section 2.3.2). 

The number of elements for each ensemble was set to 200. As reported in literature 
[3,10], 100 elements are a good compromise between the minimization of the random com-
ponent typical of EnKF and the computational cost of the algorithm. Having improved 
the computational cost of the algorithm, it was possible to double the number of ensem-
bles to further minimize the random component.  

Two other important parameters of EnKF scheme are the error on the model simula-
tions (ε) and the error on the measurements τ [11], the first was adjusted as suggested by 
[3], the second was calibrated according to the validation of the LAI estimates retrieved 
from Sentinel-2 data using the SNAP S2Toolbox module made by [12].  

2.2. Assimilation Efficiency Assessment 
In order to evaluate the assimilation efficiency of EnKF-SAFY_swb, a procedure 

based on synthetic data, proposed by [13], was applied. This allowed to rigorously quan-
tify the advantage of LAI assimilation (using the EnKF method) in SAFY_swb, compared 
to the simple use (called open loop) of the model. Furthermore, using synthetic data, it 
was possible to generate different scenarios not only for environmental and meteorologi-
cal conditions, but also for the number of observations to be assimilated and different 
errors on the measurements. In this way the assimilation efficiency has been evaluated for 
several LAI errors and numbers of observations to be assimilated. This configuration pro-
posed by [13], defined as general case, is presented in more detail in section 2.2.1. Once 
the ranges of measurement error and the number of observations for which it is conven-
ient to use EnKF-SAFY_swb was established, the scheme proposed by [13] was repeated 
for a specific case (section 2.2.2). The specific case is similar, in terms of number of obser-
vations and LAI error, to the real case subsequently studied, but with a dataset composed 
by several heterogeneous scenarios (section 2.3). 

The idea of the synthetic data procedure is to simulate the crop cycle in a hypothetic 
scenario using the crop model (in this case SAFY_swb) and assuming the combination of 
inputs and the consequent outputs represent “true” values. Then the model is run again, 
using a standard calibration, either using or not the assimilation of an “observed” varia-
ble. The latter is obtained using the “true” value plus an error). Finally, the results ob-
tained using or not the assimilation are compared, in order to obtain an index that quan-
tifies the assimilation efficiency.  

The procedure is composed by 5 phases (Figure 2). In phase 1 the input dataset, com-
posed by observed meteorological data, independent parameters, and environmental-de-
pendant parameters, is set.  
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Figure 2. Scheme for the analysis of the assimilation efficiency of the EnKF-SAFY_swb method. 

The input dataset was set up in this study starting from five real scenarios. These 
scenarios are described in Table 1. Daily climatic information, soil texture and type of crop 
are the characteristics considered to define the five initial scenarios through a series of 
parameters. The five real case scenarios were selected for covering a large climatic, soil 
and crop conditions, in order to create a robust synthetic dataset for diverse conditions. 
Temperatures, precipitations and solar radiation described the climatic characteristics. 
They were collected from literature [3,4,14] and are not varied to generate the synthetic 
dataset. 

Table 1. Overview of the five initial scenarios used to generate the synthetic dataset. Since soil 
characteristics are not available, the parameters referring to them have been set on typical values 
from literature [48,49]. 

ID Geographic Location Climatic Characteristics Soil 
Characteristics Crop 

Scenario 1 Lat: 45.20 
Lon: 10.84 

Precipitations per year are around 233 mm. 
They are mainly in late spring and summer. 
Temperatures between -6°C in winter and 37 
in summer, average annual temperature of 

17°C. 

Silt Maize 

Scenario 2 Lat: 41.87 
Lon:-93.08 

Precipitations per year are around 639 mm. 
They are mainly in late spring and summer. 
Temperatures between -16°C in winter and 

25 in summer, average annual temperature of 
17°C. 

Loam Maize 

Scenario 3 Lat: 41.89 
Lon: 12.19  

Precipitations per year are around 761 mm. 
Rainfall is distributed throughout the 4 

seasons, especially in autumn. Heavy but 
sporadic rainfall in summer. Temperatures 
between 5°C in winter and 32 in summer, 

average annual temperature of 13°C. 

Sandy clay loam Winter wheat 
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Scenario 4 
Lat: 43.02 
Lon: 11.68 

Precipitations per year are around 674 mm. 
Rainfall is distributed throughout the year, 
particularly abundant in autumn. Tempera-
tures between -3°C in winter and 30 in sum-
mer, average annual temperature of 11°C. 

Loam Winter wheat 

Scenario 5 
Lat: 40.18 

Lon: 116.34 

Precipitations per year are around 306 mm, 
almost totally during summer. Cold and dry 
winter with minimum temperatures of -12°C, 

wet and warm summer with maximum 
temperatures of 35°C. Average annual 

temperature of 13°C. 

Clay loam Winter wheat 

In this study, we have defined as "independent parameters" those which describe a 
scenario and which do not uniquely depend on a single characteristic, but on a combina-
tion of characteristics. The list of independent parameters is shown in Table 2. The random 
variation of these parameters generated several fields for each scenario that made up the 
synthetic dataset. 

Table 2. List of independent parameters. Parameters of SAFY_swb not uniquely connected to 
crop, management, or soil. 

ID Parameter Name Unit 
Pfen_PrtA Partition to leaf function - 
Pfen_PrtB Partition to leaf function: parameter 2 - 
Pfen_SenA Sum of temperature for senescence °C 
Pfen_SenB Rate of senescence °C/day 
Pfen_MrgD Day of emergence Day (in day of year) 
Pgro_Lue Effective Light-use efficiency g /MJ 
Pgro_R2P Global to PAR incident radiation ratio - 
Pgro_Kex Extinction of Radiation in Canopy  - 
Pgro_Sla Specific Leaf-Area m2/g 

Pgro_P2G Partition Coefficient to Grain 1/°C 
Pgro_Ms0 Initial dry above-ground global variation g/m2 

During phase 1, the independent parameters are varied with a random perturbation. 
This perturbation is characterized by an error randomly chosen in a range of 15% of 
parameter value, using a Gaussian random function. This operation is repeated 𝑛 times, 
where 𝑛 represents the number of fields for each scenario. The final number of simula-
tions generated will be equal to 5 ∙ 𝑛 (where 5 represents the number of initial scenarios 
and 𝑛 the number of fields for each scenario). We therefore define the set of independent 
and environmental-dependent parameters of each field as "true" initial condition.  

In phase 2 (upper part of Figure 1), the SAFY_swb model is run and uses as input the 
“true” initial condition values and the meteorological data. The obtained model outputs 
are considered the "true" values of the biophysical quantities we want to observe (LAI, 
ET, biomass, and yield). The set of "true" initial condition values and "true" biophysical 
variable values together build up the synthetic dataset and will be used as a reference to 
determine the assimilation efficiency of the EnKF method for SAFY_swb. 

Phase 3 is characterised by the simulation of the observed LAI, i.e., an estimate of 
LAI obtained from EO data is simulated by adding an error. In the general case (section 
2.2.1), a list of typical errors is added, increasing the number of simulations at 5 ∙ 𝑛 ∙𝑛  , where 𝑛  is the number of error values considered. In this phase, also the 
number of assimilated observations is introduced. The number of assimilated observa-
tions (𝑛 ) is established a priori. It can vary as in the general case or be fixed as in the 
specific case (section 2.2.2). In case it varies, the number of variation (i.e., the number of 
cases with different number of assimilated observations days) increases the number of 
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final simulations, turning out to be: 5 ∙ 𝑛 ∙ 𝑛 ∙ 𝑛  (where 𝑛  is the number of 
cases for different numbers of assimilations considered). The need to distinguish two dis-
tinct cases arises to solve a computational efficiency problem, so the first set of simula-
tions, generated in the “General Case”, was used to quantify the influence of the number 
of assimilated observations and the error on the assimilated variable on the efficiency of 
the method. The second set of simulations (“Specific Case”) was done to fix the number 
of observations and LAI measurements error to values similar to those occurring in the 
real case study and it was used to evaluate the assimilation efficiency of the model for this 
specific condition. 

During phase 4 the SAFY_swb model was run twice for each field, with and without 
assimilation, in order to obtain the biophysical variables for both cases and to compare 
them with the “true” values. The independent parameters to run the model are initially 
set in both cases using a generic calibration retrieved from the literature [1,3,14–17]. In 
phase 5 the simulated values of biophysical variables, in presence of assimilation and sim-
ulated values of biophysical variables without the assimilation are compared with the 
“true” values following the method proposed by [13] for calculating the Assimilation Ef-
ficiency Index (AE), as detailed here below.  

First of all, the relative mean absolute errors (RMAE) were calculated, both for the 
method with assimilation (𝑅𝑀𝐴𝐸  ) and for the method without assimilation (𝑅𝑀𝐴𝐸 ), 
as indicated in the Equations (11) and (12), respectively: 

𝑅𝑀𝐴𝐸 = 1𝑁 |𝑉 − 𝑉 ||𝑉 |  (11)

𝑅𝑀𝐴𝐸 = 1𝑁 |𝑉 − 𝑉 ||𝑉 |  (12)

where: 𝑁 : number of fields (i.e., number of hypothetic scenarios); 𝑉 : “true” value of Reference Biophysical variable (e.g., yield); 𝑉 : simulated value of Reference Biophysical variable calculated using the assimi-
lation method; 𝑉 : simulated value of Reference Biophysical variable calculated running the crop 
model without the assimilation method. 

Subsequently the AE was calculated following Equation (13): 𝐴𝐸 = 100 ∙ (1 − 𝑅𝑀𝐴𝐸𝑅𝑀𝐴𝐸 ) (13)

For completeness, the assimilated variable (the LAI) was also compared with the true 
values. A number of eight observations (arbitrarily chosen value), taken at a constant in-
terval in the time interval between the onset of senescence and harvest, were considered 
and the RMSE was calculated. In a similar way the RMSE was also calculated for biomass 
and ET. 

2.2.1. General Case 
We have defined the General Case as the application of the methodology proposed 

by [38] which aims to evaluate how the variation in the number of observations assimi-
lated and the measurement error of the variable to be assimilated (in this case the LAI) 
affect the assimilation efficiency of EnKF -SAFY_swb.  

The LAI to be assimilated (𝐿𝐴𝐼 ) is obtained by adding an error proportional to the 
same value to the “true” value of LAI, as shown in Equation (14). 𝐿𝐴𝐼 (𝑑) = 𝐿𝐴𝐼 (𝑑) ± 𝜀 ∙ 𝐿𝐴𝐼 (𝑑) (14)

where: 
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𝑑: day of assimilation; 𝐿𝐴𝐼 : “true” value of LAI; 𝜀 : coefficient of LAI error on the measurements; 𝜀  considered in the general case are: 0.05, 0.1, 0.15, 0.2, 0.25, 0.3. 
In this case, also the number of assimilated observations was varied. A set of 5, 10, 15 

and 20 observations (and corresponding assimilations) were considered. In this way, 600 
simulations were finally carried out. For the general case, the yield was used as reference 
variable to calculate 𝑅𝑀𝐴𝐸  , 𝑅𝑀𝐴𝐸  and, consequently, the assimilation efficiency 
index 𝐴𝐸 (Equations (11)–(14)).  

2.2.2. Specific Case 
The specific case was analysed to obtain the assimilation efficiency for conditions 

very similar to the real case of study used to validate the EnKF-SAFY_swb method. The 
number of assimilated observations is fixed to 6, because this is the minimum number of 
Sentinel-2 images available for the area of interest during the crop growth cycle. The error 
of LAI measurement is fixed to 20%, as indicated in literature [44] for LAI derived from 
Sentinel-2 data using the SNAP software. Since the number of observations and the error 
on LAI are fixed, the number of simulations is equal to the number of fields, so it was 
possible to increase the number of fields in order to obtain a wider variety of potential 
scenarios. In this case, the number of fields has been set to 1000 for each initial scenario, 
for a total of 5000 simulations.    

2.3. Grosseto Case Study (Central Italy) 
All data acquired in situ used for the validation of this study were collected during 

the 2018 SurfSense campaign funded by ESA [54]. The field campaign was part of a larger 
activity in the context of future EO programmes promoted by Copernicus, the European 
Union’s Earth Observation Programme [6]. Specifically, the campaign described by [54] 
aims to demonstrate the validity of the Copernicus Candidate mission High Spatio-Tem-
poral Resolution Land Surface Temperature Monitoring (LSTM). The LSTM mission aims 
to address water, agriculture and food security issues by monitoring the variability in LST 
(and hence evapotranspiration) at the European field scale enabling more robust estimates 
of field-scale water productivity [54]. LST is closely linked to ET, the reference variable 
chosen in this study to demonstrate the effectiveness of the EnKF-SAFY_swb method. Alt-
hough the field campaign was not specifically designed for the presented study, the rec-
orded data are very useful for the presented analysis. 

2.3.1. Study Area and In Situ Data 
The study area is in a farm (Le Rogaie) located in Central Italy, in the province of 

Grosseto, in the coastal zone of Southern Tuscany (Figure 3). It is characterized by a Med-
iterranean climate, with very mild and wet winters and very hot summers. During winter, 
minimum temperatures during the night under 0°C are common as well maximum tem-
peratures over 30°C during the days of summer. Detailed climatic data of 2018 are shown 
in Figure 4. Consorzio Lamma, Laboratory of Meteorology and Environmental Modelling 
have provided temperatures, precipitation and daily solar radiation data. The meteo sta-
tion was located at 42.769 N and 11.016 E.  
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Figure 3. Study area: Le Rogaie, Grosseto, Tuscany (Italy). The base map used for the image on the 
left was downloaded from the google catalogue made available for the QGIS plugin QuickMapS-
ervice. The base map used for the image on the right is true colour composite based on HyPlant 
data recorded on 20 July 2018 during SurfSense 2018 [54]. 

Since data of daily solar radiation was not available for some days, the RadEst model 
[18] was applied to estimate the parameter for the missing days and fill the gaps. The 
reference evapotranspiration has been calculated using the FAO software ET0 Calculator 
[19].  

These fields were classified into 8 groups (from A to H) according to similar charac-
teristics such as sowing date, management of irrigation and average trend of the LAI. The 
fields belonging to the groups A (in the northern part), B, C and D (in the southern part), 
of a total area of 33 ha were managed using fixed sprinkler irrigation systems during the 
maize growth period, while the fields belonging to the groups D, E, F, G, H located within 
a circular area of 72 ha with a diameter of about one km were irrigated by a rotating pivot 
system, which is normally operated 24 h a day in the period June-August.  

Details of the soil properties, obtained from an intensive sampling campaign carried 
out during summer 2018 in the study area are reported in Table 3. 

Table 3. Summary of soil property statistics of the study site (Grosseto, Central Italy). 

Soil property Min Max Mean St.dev. 
pH 7.1 8.2 7.5 0.2 

Electrical 
Conductivity 

(mS cm-1) 
158.0 2970.0 1472.5 548.5 

Sand (%) 7.7 34.9 18.2 6.1 
Silt (%) 38.7 67.3 55.0 6.2 

Clay (%) 12.3 43.9 26.8 6.8 
Carbonates (g 

kg-1) 73.0 148.0 122.8 11.3 
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Total nitrogen (g 
kg-1) 

0.1 0.2 0.2 0.0 

Organic carbon 
(g kg-1) 0.9 1.7 1.4 0.2 

C/N 6.6 8.9 7.5 0.5 
A full irrigation cycle is completed within four days. A malfunction of the system did 

not allow proper irrigation between 16th and 22nd of July. 

 
Figure 4. Study area: Le Rogaie, Grosseto, Tuscany (Italy). The base map used for the image on the 
left was downloaded from the google catalogue made available for the QGIS plugin QuickMapS-
ervice. The base map used for the image on the right is true colour composite based on HyPlant 
data recorded on 20 July 2018 during SurfSense 2018 [54]. 

Turbulent flux data were acquired using an Eddy-covariance (EC) system installed 
inside the pivot area (11.07073, 42.83203) in accordance to the EuroFlux methodology [20] 
.The EC system was operational between the 143rd and 241st  day of the year 2018 (May 
23rd  till August 29th). The fluxes  (including the latent heat flux data in W/m- 2 used in 
this study) were calculated ) on half hourly intervals using the ECpack software [21].  

2.3.2. Airborne Measurements  
The airborne data used in this study were gathered as part of the Surfsense2018 ESA 

campaign [22]. The sensor used was the Thermal Airborne Spectrographic Imager (TASI-
600), a push broom hyperspectral thermal sensor system specifically designed for airborne 
data acquisition. It is sensitive to wavelengths in the long wave infrared (LWIR) and 
measures the intensity of emitted radiance from the imaged target across 32 spectral bands 
in the range of 8 to 11.5 µm. The data were acquired on the 199th and 201st day of the year 
(July 18th and 20th), between 12:00 and 16:00 (local time), following the flight plan shown 
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in Figure 5. The data acquired with the TASI were used to estimate the Surface Tempera-
ture (𝑇 ). 

 
Figure 5. Airborne flight plan used to record airborne data with the TASI-600 and HyPlant DUAL 
sensor. Airborne data were recorded during the 2018 Surfsense campaign [54]. The base map was 
elaborated from Sentinel-2A data acquired on 8/7/2018. 

Simultaneously, optically reflective data were acquired using the HyPlant DUAL air-
borne imaging spectrometer. HyPlant DUAL consists of two push-broom hyperspectral 
line scanners, which provide contiguous spectral information from 370 nm to 2500 nm 
with 3 nm spectral resolution in the VIS/NIR and 10 nm spectral resolution in the SWIR 
spectral range.  

Both the data acquired with the TASI and HyPlant were processed during the Surf-
sense2018 campaign [54] to obtain the estimations of the instantaneous Latent Heat Flux 
(LE). Those estimation were carried out using the Simplified Surface Energy Balance In-
dex (S-SEBI) model described in [32,33]: 𝐿𝐸 =  Λ(𝑅 − 𝐺) (15)

where Λ is the instantaneous evaporative fraction (adimensional), 𝑅  is the instan-
taneous net radiation flux and G is the instantaneous soil heat flux (both expressed in ). 
According to [32], Λ was calculated as: Λ =  𝑇 − 𝑇𝑇 − 𝑇  (16)

where 𝑇 is the land surface temperature and 𝑇  and 𝑇  are the temperatures cor-
responding to dry and wet surface conditions for a given albedo value and can be obtained 
from the scatterplot between surface temperature and albedo according to [57]. 𝑅  is expressed as follow: 𝑅𝑛 =  (1 − α) 𝑅𝑔 +  ε 𝐿↓ – ε σ 𝑇  (17)

where α is the albedo, Rg ( ) is the incoming shortwave radiation, ε is the surface 
emissivity, L↓ ( ) the incoming longwave radiation, σ ( ∙ 4) is the Stefan-Boltzmann 
constant and 𝑇  is the surface temperature measured in °K. 

G was calculated as suggested by [58]: 
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𝐺 = [0.0038 (𝑇 − 273.15 )  +  0.0074 α  (1 − 0.98 NDVI )]Rn (18)

All the details about the airborne acquired data and their processing to obtain the 
instantaneous LE are explained in detail in [23]. 

2.3.3. From Instantaneous LE to Daily Actual ET  
In order to compare the daily evapotranspiration simulated by EnKF-SAFY_swb 

with the data acquired in situ using Eddy Covariance (EC) and through airborne combin-
ing TASI and HyPlant is necessary to convert the instantaneous LE ( ) to daily actual 
Evapotranspiration (𝑚𝑚). For the EC data the daily latent heat flux (𝐿𝐸 ) was calculated 
by simply integrating the half hourly latent heat flux (𝐿𝐸 ) during the period of daylight 
using as time interval dt = 30 min. For the estimates of 𝐿𝐸  obtained from the airborne 
data it was necessary to use a model that related 𝐿𝐸  to 𝐿𝐸 .  

With a view to developing a methodology that can be adapted in the future to the 
use of daily land surface temperature data acquired via satellite (for example LSTM), it 
was decided to use a single estimate of  𝐿𝐸  to derive the daily ET. The methodology 
used to obtain this conversion is the one proposed by [23] and [24]. They affirm that the 
ratio between solar total daily irradiance and instantaneous solar irradiance is equal to the 
ratio of 𝐿𝐸  (expressed in ∙ ) and instantaneous latent heat flux 𝐿𝐸  (expressed in 

 ). The relationship between 𝐿𝐸  and LEi  proposed by [59,60] is shown in Equation 
(19): 𝐿𝐸 = 𝐿𝐸 2𝑁𝜋 sin (𝜋𝑡𝑁 ) (19)

Where N is the daylight period (calculated as a function of latitude or knowing the 
sunrise and sunset times of a given day of the year) and t the unit time of reference.  

To obtain the daily ET expressed in mm, 𝐿𝐸  was divided by the latent heat of evap-
oration of water.  

2.3.4. Satellite Data  
A set of nine Level 2 cloud free Sentinel 2 images covering the study area were se-

lected for the analysis. The level 2 images were processed with the SNAP module 
S2toolbox [25]to estimate the LAI (Table 4).   

Table 4. List of Sentinel-2 Level 2 images used for this study and their day of acquisition (column 
2). In the column called Validation, the images classified as "no" were used for the assimilation, 
while the images classified with capital letters were used to validate the results of the group of 
fields corresponding to the latter. 

ID Day of Acquisition Validation 
S2A_MSIL2A_20180419T101031 139 no 
S2A_MSIL2A_20180618T101021 169 no 
S2A_MSIL2A_20180708T101031 188 no 
S2A_MSIL2A_20180718T101031 199 no 
S2A_MSIL2A_20180807T101021 219 no 
S2A_MSIL2A_20180817T101021 229 no 
S2A_MSIL2A_20180827T101021 239 A-C-D 
S2A_MSIL2A_20180906T101021 252 no 
S2A_MSIL2A_20180926T101021 269 B-E-F-G-H 

The trend of average LAI for each group of fields (defined as described in section 
2.3.1) and the corresponding standard deviation were calculated and are shown in Figure 
6. For each trend all the images were used for the assimilation, except the last image of the 
trend, which was used to validate the simulations generated with the EnKF-SAFY_swb.  
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Figure 6. Average LAI Trend estimated from Sentinel-2 data. The error bars represent the stand-
ard deviation for each group of fields. 

Each group of fields (Table 5) has the same sowing date, harvest date and number of 
assimilations. For each group of fields, the LAI is monitored during the crop cycle by the 
number of images assimilated (specified in Table 4) and the last image of the cycle was 
used for the validation (the acquisition date of the images used for validation for each 
group of fields is specified in Table 4).  

Table 5. List of groups of fields. Each group has same sowing date, harvest date and number of 
images assimilated. 

Group Sowing date Harvest date Number of LAI observations 
A 17 April 2018 24 August 2018 6 
B 27 April 2018 03 October 2018 8 
C 17 April 2018 30 August 2018 6 
D 12 April 2018 22 August 2018 6 
E 10 June 2018 27 October 2018 6 
F 10 June 2018 27 August 2018 6 
G 22 May 2018 22 October 2018 7 
H 22 May 2018 22 October 2018 7 

2.3.5. EnKF-SAFY_swb Method Pre-Processing 
As mentioned in section 2.1 the majority of parameters of the model are kept constant 

during the run of EnKF-SAFY_swb (Table 6 and Table 7), while 5 parameters are varied 
during the model runs (Table 8). 
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Table 6. List of model fixed parameters and their calibration values. 

ID Description Value Unit Reference 

Pfen_PrtA Partition-to-leaf function: parameter 
1 0.279 - [14] 

Pfen_PrtB 
Partition-to-leaf function: parameter 

2 0.0022 - [14] 

Pfen_SenA Sum of temperature for senescence 1100 °C [14] 
Pfen_SenB Rate of senescence 5463 °C 𝑑𝑎𝑦 [14] 

MxRDP 
Maximum GDD required to reach 

maturity (°C) 1660 °C [50] 

Pgro_Ms0 Emergence Dry Mass Value  2.5 𝑔 𝑚  [50] 

Maize.MxDay 
Maximum Days from emergence to 

physiological maturity 175 days [50] 

Maize.RunWin Window size for running average 
temperature 

18 °C [50] 

Maize.RunAvg Running average daily mean 
temperature before planting 

12 °C [50] 

Maize.RunMin Running average daily min 
temperature before planting 

8 °C [50] 

Maize.ErlPlant_doy Earliest planting date 91 Day of Year [50] 

Maize.EmGDD GDD required from planting to 
emergence 

80 °C [50] 

Maize.Tmin Minimum Temperature for Plant 
Development (°C 10 °C [50] 

Maize.Topt 
Optimal Temperature for Plant 

Development (°C) 30 °C [50] 

Maize.Tmax 
Maximum Temperature for Plant 

Development  40 °C [50] 

RootRatio root weight to length ratio  9800 cm/g [50] 

RtGrtRate root depth growth rate 0.16 
𝑐𝑚𝑑𝑒𝑔 ∙ 𝑑𝑎𝑦 [50] 

MxRDP maximum root depth 120 cm [50] 
Rnff runoff factor 0.2 - [52] 

SALB Soil Albedo 0.18 - [53] 
DrnCoeff profile drainage coefficient 6.99 𝑐𝑚 𝑑𝑎𝑦 [54] 

MxRWU maximum root water uptake rate 0.0035 
𝑐𝑚 [𝑤𝑎𝑡𝑒𝑟]𝑐𝑚[𝑟𝑜𝑜𝑡] ∙ 𝑑𝑎𝑦 [54] 

Table 7. Soil parameters. Calibrated by crossing [54] and [61]. They were kept constant during 
EnKF-SAFY_swb run. 

ID Unit Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 
Layer Depth cm 10 15 25 50 50 

Field Capacity (FC) cm3/cm3 0.46 0.46 0.46 0.45 0.45 
Wilting Point (WP) cm3/cm3 0.30 0.30 0.30 0.29 0.29 

Air Dry cm3/cm3 0.23 0.22 0.2 0.22 0.22 
Saturation (Sat) cm3/cm3 0.54 0.54 0.54 0.54 0.54 
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Table 8. List of parameters that vary in EnKF-SAFY_swb. 

ID Min Max Mean Standard Deviation Description 
Pgro_Lue 2.88 3.52 3.2 0.32 Effective Light use efficiency 

Pgro_R2P 0.423 0.517 0.47 0.047 Global to PAR incident radiation ratio 
(Climatic Efficiency) 

Pgro_Kex 0.45 0.55 0.5 0.05 Light interception coefficient 
Pgro_Sla 0.018 0.022 0.02 0.002 Specific Leaf-Area  

Pgro_P2G 0.00585 0.00715 0.0065 0.00065 Partition coefficient To Grain 
The parameters of the model kept constant during the run of SAFY_swb are shown 

in Table 6 and Table 7. They are calibrated using information obtained in situ, from air-
borne data and EO data [22] and information retrieved by literature [1,14–17]. The calibra-
tion is intentionally generic, because the idea is to test the efficiency of the EnKF-
SAFY_swb methodology in the absence of a specific calibration for each field which is 
generally a great difficulty in using crop growth models.  

The parameters to be changed during the execution of EnKF-SAFY_swb were chosen 
based on the sensitivity analysis made by[26]. To simplify the computational process of 
the algorithm only the five parameters that most affect the model were selected to be var-
ied. 

As suggested by literature [3,10,27,28], the size N of the ensemble used in the EnKF 
DA method (N corresponds to the number of simulations for each pixel) has to be big 
enough to ensure the convergence of the model [11]. For this study N was set to 200. The 
error of the model is considered as a percentage of the mean simulated LAI and is set to 
20 % [3], as suggested by the results obtained evaluating the assimilation efficiency of the 
developed methodology (sections 2.2 and 3.1). The error of the measurement was set at 20 
% as described by [22]. 

In Table 9 the number of pixel and the number of point for each group of fields are 
shown. 

Table 9. Number of pixel and number of points used for assimialtion for each group of fields. 

ID  Number of Pixels Number of Point Used for the Assimilation 
Group A  675 4050 
Group B 101 808 
Group C 988 5928 
Group D 359 2154 
Group E 3029 18174 
Group F 1196 7176 
Group G 1215 8505 
Group H 799 5593 

 


