Supplementary material

Figure S1. Monthly rainfall (blue bars), average maximum temperatures (continuous lines) and average minimum temperatures (dashed lines) during the experiment in the Yaqui Valley (Sonora, Mexico).

Table S1. Critical dates (sowing, harvest, fertilization, irrigation) for conventional tillage (CT) and conservation tillage (CS) treatments and for the two irrigation blocks during the 4 experimental years.

	2014		2015		2016		2017	
	СТ	CS	СТ	CS	СТ	CS	СТ	CS
Sowing	27/11/2013	27/11/2013	25/11/2014	27/11/2014	11/12/2015	10/12/2015	06/12/2017	05/12/2016
First fertilization	8/11/2013	27/11/2013	7/11/2014	27/11/2014	23/11/2014	10/12/2015	16/11/2016	05/12/2016
Harvest	29/04	/2014	20/04	/2015	04/05	/2016	29/04	/2017
		Two post-plant irrigations						
Second fertilization	31/01	/2014	30/01	/2015	13/02	/2016	10/02	/2017
First irrigation	31/01	/2014	30/01	/2015	13/02	/2016	10/02	/2017
Second irrigation	01/03	/2014	27/02	/2015	11/03	/2016	11/03	/2017
		Four post-plant irrigations						
Second fertilization	20/01	/2014	30/01	/2015	05/02	/2016	10/02	/2017
First irrigation	03/01	/2014	9/01/	2015	15/01	/2016	12/01	/2017
Second irrigation	20/01	/2014	30/01	/2015	05/02	/2016	10/02	/2017
Third irrigation	20/02	/2014	20/02	/2015	09/03	/2016	14/03	/2017
Fourth irrigation	13/03	/2014	12/03	/2015	29/03	/2016	05/04	/2017

Table S2. Selected dates of image acquisition and the corresponding wheat growth stage (GS) of the two irrigation blocks during the 4 experimental years. Names of the relevant GSs for the analysis are in parentheses in addition to the decimal code.

Date of image acquisition	Growth stage of block with	Growth stage of block with			
	two post-plant irrigations	four post-plant irrigations			
2014					
10/01/2014	GS31* (beginning of stem elongation)	G\$23			
17/01/2014	GS37 (end of stem elongation)	GS31			
30/01/2014	GS41 (early boot stage)	GS37			
07/02/2014	GS51 (heading)	GS41			
19/02/2014	GS61 (beginning of flowering)	GS51			
27/02/2014	GS71 (watery ripe)	GS65			
11/03/2014	GS73 (early milk)	GS71			
17/03/2014	GS75 (medium milk)	GS73			
28/03/2014		GS75			
	2015				
04/02/2015	GS41	GS37			
09/02/2015	GS51	GS41			
25/02/2015	GS71	GS61			
10/03/2015		GS73			
15/03/2015	GS75				
23/03/2015		GS75			
	2016				
26/02/2016	GS41	GS37			
03/03/2016	GS61	GS51			
09/03/2016	GS65	GS61			
15/03/2016	GS71				
22/03/2016		GS73			
	2017				
17/01/2017	GS31	GS24			
02/02/2017	GS37	GS31			
10/02/2017	GS41	GS37			
16/02/2017	GS51	GS37			
22/02/2017		GS41			
15/03/2017	GS71	GS51			
05/04/2017	GS75	G\$73			

*Growth stage reported as in Meier (1997). Growth stages of mono-and dicotyledonous plants. Blackwell Wissenschafts-Verlag.

Table S3. Reflectance used to calculate the airborne indices (Table S5) and the exact bands of the hyperspectral image from which the reflectance was extracted. Where R_i is the reflectance extracted from the *i* band of the hyperspectral image.

Reflectance used to calculate the airborne indices	Wavelengths (nm) of the bands from which the reflectance was extracted
R_{400}	398
R_{450}	449
R ₅₃₉	538
R ₅₅₀	550
R570	(567 + 574) / 2*
R ₆₇₀	670
R 700	700
R 704	707
R ₇₂₀	(714 + 722) / 2*
R 750	751
R ₇₉₀	(788 + 795) / 2*
R_{800}	(795 + 803) / 2*
R ₈₁₅	818

*The reflectance was calculated as the average of the reflectance extracted from the two bands.

Index	Equation	Reference			
Greenness or structural indices					
Normalized difference vegetation index (NDVI)	$NDVI = (R_{800} - R_{670}) / (R_{800} + R_{670})$	[54]			
Reformed difference vegetation index (RDVI)	$RDVI = (R_{800} - R_{670}) / (R_{800} + R_{670})^{\circ.5}$	[55]			
Optimized soil-adjusted vegetation index	$OSAVI = (1 + 0.16) \times (R_{800} - R_{670})/(R_{800} + R_{670} + C_{670})$	[45]			
(OSAVI)	0.16)				
Normalized green	$NG = R_{800}/R_{550}$	[52]			
	Chlorophyll indices				
Red-edge optical reflectance	R_{750}/R_{710}	[53]			
Double peak canopy nitrogen index	$DCNI = (R_{720} - R_{700}) / (R_{700} - R_{670}) / (R_{720} - R_{670} + 0.03)$	[56]			
Modified chlorophyll absorption ratio index (MCARI)	$MCARI = [(R_{700} - R_{670}) - 0.2(R_{700} - R_{550})] (R_{700}/R_{670})$	[52]			
Transformed chlorophyll absorption in	$TCARI = 3 [(R_{700} - R_{670}) - 0.2 (R_{700} - R_{550})$	[46]			
reflectance index (TCARI)	$(R_{700}/R_{670})]$				
Combined TCARI/OSAVI	TCARI/OSAVI	[9]			
Normalized difference red-edge (NDRE)	NDRE = $(R_{790} - R_{720})/(R_{790} + R_{720})$	[51]			
Red-edge chlorophyll index (CI _{red edge})	$CI_{red edge} = (R_{800}/R_{720}) - 1$	[47]			
	Xanthophyll indices				
Photochemical reflectance index (PRI)	$PRI = (R_{570} - R_{539})/(R_{570} + R_{539})$	[48]			
Blue/green/NIR ratio indices					
BGI1	$BGI_1 = R_{400}/R_{550}$	[49]			
BGI2	$BGI_2 = R_{450}/R_{550}$	[50]			
Canopy chloropyhll content					
Canopy chlorophyll content (CCC)	CCC=0.325(R ₈₁₅ /R ₇₀₄)-0.358	[57]			
Canopy chlorophyll content index (CCCI)	CCCI=(NDRE-NDRE _{min})/(NDRE _{max} -NDRE _{min})	[51]			
Nitrogen planar domain index	$NDPI = (CI_{red edge} - CI_{red edge min}) / (CI_{red edge max} - CI_{red edge min})$	[20]			

Table S4. Airborne hyperspectral indices calculated in this study.

Figure S6. Correlograms of the vegetation indices calculated as in Table S4. The value inside each square of the grid is the coefficient of correlation (r value) at $P \le 0.01$ for different years: a) 2014, b) 2015, c) 2016 and d) 2017.

Figure S7. Linear and exponential relationship between spectral indices (NDVI, R_{750}/R_{710} and CCC) and crop variables (yield, biomass and N output) at flowering. The X-axis represents the spectral index values and the Y-axis the crop variable values. Dotted lines are the adjusted linear (black) and exponential (red) model and R^2 its coefficient of determination.

	Grain yield	Biomass	GNC	N output
irr	0.000	0.000	0.000	0.000
till	0.061	0.007	0.004	0.020
nlevel	< 2.2x10 ⁻¹⁶	< 2.2x10 ⁻¹⁶	< 2.2x10 ⁻¹⁶	< 2.2x10 ⁻¹⁶
year	< 2.2x10 ⁻¹⁶	< 2.2x10 ⁻¹⁶	< 2.2x10 ⁻¹⁶	< 2.2x10 ⁻¹⁶
irr:till	0.003	0.002	0.000	0.001
irr:nlevel	< 2.2x10 ⁻¹⁶	0.000	< 2.2x10 ⁻¹⁶	< 2.2x10 ⁻¹⁶
till:nlevel	0.713	0.556	0.370	0.913
irr:year	0.000	0.002	< 2.2x10 ⁻¹⁶	0.000
till:year	0.001	0.065	0.000	0.000
nlevel:year	0.193	0.096	< 2.2x10 ⁻¹⁶	0.000
irr:till:nlevel	0.018	0.583	0.068	0.026
irr:till:year	0.018	0.000	0.000	0.272
irr:nlevel:year	0.001	0.247	< 2.2x10 ⁻¹⁶	0.041
till:nlevel:year	0.000	0.022	0.192	0.000
irr:till:nlevel:year	0.951	0.184	0.001	0.914

Table S5. Results (P-value) of the analysis of variance between irrigation (irr), tillage (till), N treatment (nlevel) and year, and their combined interactions on the wheat grain yield, total above-ground biomass, grain N concentration (GNC) and N output at harvest.

P-values in bold are significant at 5% probability or lower.

Figure S9. Biomass for combined tillage and irrigation factors, for each N treatment, over the 4 years. Small bars indicate SE.

Figure S10. Spectral reflectance (%) from 400 nm to 850 nm, for the different N treatments (N0, N1, N1b, N2, N2b, N2c) with conventional tillage, either with two post-plant irrigations (top row), or with four post-plant irrigations (bottom row), at five growth stages, in 2014.

Figure S11. Contour maps of the coefficient of determination (\mathbb{R}^2) between the NDSI (R_i , R_j) and grain yield using the complete combinations of two wavelengths at *i* and *j* nm within the range 400–850 nm. At each growth stage, data from the different years were merged to build the figure (4 years for all the GSs, and 2 for the end of stem elongation and early milk stages).

Figure S12. Contour maps of the root mean square error (RMSE, kg ha⁻¹) between the NDSI (R_i , R_j) and biomass using the complete combinations of two wavelengths at *i* and *j* nm within the range 400–850 nm. At each growth stage, data from the different years were merged to build the figure (4 years for all the GSs and 2 for the end of stem elongation and medium milk stages).

Figure S13. Contour maps of the coefficient of determination (\mathbb{R}^2) between the NDSI (R_i , R_j) and biomass using the complete combinations of two wavelengths at *i* and *j* nm within the range 400–850 nm. At each growth stage, data from the different years were merged to build the figure (4 years for all the GSs and 2 for the end of stem elongation and medium milk stages).

Figure S14. Contour maps of the coefficient of determination (\mathbb{R}^2) between the NDSI (R_i , R_j) and Grain N concentration using the complete combinations of two wavelengths at *i* and *j* nm within the range 400–850 nm, at different growth stages for different years: a) 2014, b) 2015, c) 2016 and d) 2017.

Figure S15. Contour maps of the coefficient of determination (\mathbb{R}^2) between the NDSI (R_i , R_j) and N output using the complete combinations of two wavelengths at *i* and *j* nm within the range 400–850 nm. At each growth stage, data from the different years were merged to build the figure (4 years for all the GSs and 2 for the end of stem elongation and medium milk stages).

