Supporting Information for

Mesoscale temporal wind variability biases global air-sea gas transfer velocity of CO₂ and other slightly soluble gases

Yuanyuan Gu^{1,2}, Gabriel G. Katul^{3,4}, Nicolas Cassar^{1,5}

 ¹Division of Earth and Ocean Sciences, Nicholas School of the Environment, Duke University, Durham, NC, USA.
²College of Oceanography, Hohai University, Nanjing, China
³Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, USA
⁴Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
⁵CNRS, Univ Brest, IRD, Ifremer, LEMAR, F-29280 Plouzané, France

Contents of this file

Text S1 Table S1 to S3 Figure S1 to S5

Text S1

In this analysis, it is assumed that a *Weibull distribution* can be fitted to the probability density function (PDF) of the 6-hour wind velocity data (U) and the best-fit parameters of the *Weibull distribution* ($\lambda > 0$ – scale parameter and $\beta > 0$ – shape parameter) are determined. In general,

$$f(U) = \frac{\beta}{\lambda} \left(\frac{U}{\lambda}\right)^{\beta-1} \exp\left[-\left(\frac{U}{\lambda}\right)^{\beta}\right].$$

For a quadradic gas transfer velocity parameterization:

$$k = a U^2$$
,

where a is a constant. What is sought is the mean k at large scales that are much longer than 1 hour (indicated by <.>). Using standard averaging rules,

$$\langle k \rangle = a \langle U^2 \rangle \neq a \langle U \rangle^2$$
.

Approaches to correct for this inequality are expressed in the form:

$$\langle k \rangle = a \langle U^2 \rangle = a \langle U \rangle^2 C_2$$
,

where, by definition,

$$C_2 = \frac{\langle U^2 \rangle}{\langle U \rangle^2}.$$

If the PDF of U is known, then $\langle U^2 \rangle$ can be linked to the Weibull parameters using

$$\langle U^2 \rangle = \int_0^\infty U^2 f(U) dU = \int_0^\infty U^2 \frac{k}{\lambda} \left(\frac{U}{\lambda}\right)^{k-1} \exp\left[-\left(\frac{U}{\lambda}\right)^k\right] dU.$$

After some algebra, it can be shown that

$$\langle U^2 \rangle = \lambda^2 \Gamma \left(\frac{2+k}{k} \right),$$

where $\Gamma(.)$ is the gamma function. The $\langle U \rangle$ can also be evaluated from

$$\langle \mathbf{U} \rangle = \int_0^\infty \mathbf{U} \mathbf{f}(\mathbf{U}) d\mathbf{U} = \int_0^\infty \mathbf{U} \frac{\mathbf{k}}{\lambda} \left(\frac{\mathbf{U}}{\lambda} \right)^{\mathbf{k}-1} \exp\left[- \left(\frac{\mathbf{U}}{\lambda} \right)^{\mathbf{k}} \right] d\mathbf{U}.$$

After some algebra, it can be shown that

$$\langle \mathbf{U} \rangle = \lambda \, \Gamma \left(\frac{1+\mathbf{k}}{\mathbf{k}} \right).$$

Hence,

$$C_2 = \frac{\langle U^2 \rangle}{\langle U \rangle^2} = \frac{\Gamma\left(\frac{2+k}{k}\right)}{\left[\Gamma\left(\frac{1+k}{k}\right)\right]^2},$$

and only varies with k not λ . For a Rayleigh distribution (k=2), the correction can be arranged as:

$$C_2 = \frac{\langle U^2 \rangle}{\langle U \rangle^2} = \frac{\Gamma(2)}{[\Gamma(3/2)]^2} = 1.27.$$

Similar steps are taken for a cubic relation

$$k = a U^3$$
.

For a Rayleigh distribution (k=2), the correction can be arranged as:

$$C_3 = \frac{\langle U^3 \rangle}{\langle U \rangle^3} = \frac{\Gamma(5/2)}{[\Gamma(3/2)]^2} = 1.91.$$

Table S1

Estimates of gas transfer velocity for CO₂ using wind speeds at two temporal resolutions (6-hourly and monthly) and spatial resolutions $(0.5^{\circ} \times 0.5^{\circ} \text{ and } 5^{\circ} \times 5^{\circ})$. Spatial bias of 6-hourly k (or monthly k) are the deviations of k in $5^{\circ} \times 5^{\circ}$ from k in the resolution of $0.5^{\circ} \times 0.5^{\circ}$. Similarly, temporal bias of k at $0.5^{\circ} \times 0.5^{\circ}$ (or $5^{\circ} \times 5^{\circ}$) are the deviations of monthly k from the 6-hourly k.

Serial	Deferre	Relation	6-hourly k (cm h^{-1})			monthly k (cm h^{-1})			Temporal Bias	
NO	Kelelence		0.5°×0.5°	5°×5°	Spatial Bias	0.5°×0. 5°	5°×5°	Spatial Bias	$0.5^{\circ} \times 0.5^{\circ}$	5°×5°
1	Wanninkholf(1992)	Quadratic	18.88	19.02	0.74%	16.73	16.85	0.72%	-11.39%	-11.41%
2	Wanninkholf and McGillis(1999)	Cubic	18.37	18.55	0.98%	13.24	13.35	0.83%	-27.93%	-28.03%
3	Nightingale et al.(2000)	Quadratic	15.75	15.86	0.70%	14.21	14.3	0.63%	-9.78%	-9.84%
4	McGillis et al.(2001)	Cubic	19.85	20.02	0.86%	15.14	15.25	0.73%	-23.73%	-23.83%
5	McGillis et al.(2004)	Cubic	16.48	16.59	0.67%	13.94	14.02	0.57%	-15.41%	-15.49%
6	Weiss et al.(2007)	Quadratic	25.31	25.49	0.71%	22.78	22.93	0.66%	-10.00%	-10.04%
7	Wanninkhof et al.(2009)	Cubic	14.41	14.52	0.76%	11.97	12.05	0.67%	-16.93%	-17.01%
8	Prytherch et al.(2010)	Cubic	26.85	27.07	0.82%	20.68	20.83	0.73%	-22.98%	-23.05%
9	Wanninkhof (2014)	Quadratic	15.29	15.4	0.72%	13.57	13.64	0.52%	-11.25%	-11.43%

Table S2

Summary of corrected k for CO₂ derived by applying the 5 correction methodologies

described in the text. The biases are evaluated when referring to k at the 6 hours resolution.

Serial NO		Method 1		Method 2		Method 3		Method 4		Method 5	
	6-hourly k	(point-by-point k_b)		$((\sigma_u / < U >)^2 = 0.15)$		(R2=1.27, R3=1.91)		$(R_2=1.23, R_3=1.78)$		(Zonal averaged R_2/R_3)	
		corrected k	Bias	corrected k	Bias	corrected k	Bias	corrected k	Bias	corrected k	Bias
1	18.88	18.9	0.11%	19.24	1.91%	21.25	11.15%	20.58	9.00%	19.74	4.56%
2	18.37	18.26	-0.60%	19.19	4.46%	25.28	27.33%	23.56	28.25%	20.8	13.23%
3	15.75	15.77	0.13%	16.00	1.59%	17.45	9.74%	16.97	7.75%	16.36	3.87%
4	19.85	19.76	-0.45%	20.61	3.83%	26.20	24.24%	24.62	24.03%	22.08	11.23%
5	16.48	16.43	-0.30%	16.89	2.49%	19.90	17.19%	19.05	15.59%	17.69	7.34%
6	25.31	25.33	0.08%	25.74	1.70%	28.09	9.90%	27.31	7.90%	26.32	3.99%
7	14.41	14.38	-0.21%	14.81	2.78%	16.66	13.51%	15.99	10.96%	14.91	3.47%
8	26.85	26.72	-0.48%	27.84	3.69%	35.15	23.61%	33.18	23.58%	29.76	10.84%
9	15.29	15.3	0.07%	15.58	1.90%	17.20	11.10%	16.66	8.96%	15.98	4.51%

Figure S1. Spatial pattern of standard deviation of wind speed around the averaged wind speed within a month.

Figure S2. Relations for f(U) and wind speed for the 9 parameterizations.

60°E120°E180°W20°W60°W 0° 0° 60°E120°E180°W20°W60°W 0° 0° 60°E120°E180°W20°W60°W 0°

Figure S3. Spatial pattern of annual mean difference 6-hourly k and monthly k for the 9 k parameterizations listed in Table 1.

Figure S4. Spatial pattern of annual mean bias estimated from the new model for the 9 k parameterizations listed in Table 1.

Figure S5. Spatial pattern of mean bias in gas transfer velocity (k) for CO₂ estimated from the difference in term 1 and term 2 of Equ. (9) for the parameterizations presented in Table 1.