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1 Introduction and Notation

This document contains detailed examples of the local quantum fluid treatment
of various significant quantum experiments and thought experiments. For each
case, you will find a space-time diagram of the experiment which shows the
trajectory of the systems involved, as well as a detailed table which shows the
detailed evolution of the internal and external memory of each system. The
tables should be read from the bottom up, since this is the direction of increasing
time in the corresponding space-time diagrams.

In the tables, system labels are superscripts, and indexes which distinguish
different subfluids of a system are subscripts. When fluid particles from two dif-
ferent systems meet at an event (and thus share the same past light cone), their
internal memories are instantaneously synchronized, and then any interaction
unitaries between those systems are applied. After the interaction, the different
external memories of each system correspond to the orthogonal terms in the
internal memory state, written in the macroscopic preferred basis. If there is
no macroscopic preferred basis, then the external memories of the systems are
microscopic and unobserved, so the choice of representational basis is arbitrary.

In the space-time diagrams, systems which are isolated from the macroscopic
environment are shown using dashed lines, while systems with a clear macro-
scopic preferred basis in the global environment are shown using solid lines.
Microscopic systems in coherent quantum superposition are isolated from the
environment in this way, but in general, any system that is isolated from another
system is in quantum superposition relative to that system. Importantly, special
relativity implies that space-like separated system states are isolated from one
another, and may thus may be in quantum superposition relative to one another
- even for macroscopic systems. Isolation where a system is kept as physically
shielded from the environment as also possible, despite constant interactions
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with fields which carry information at c, because the physical shielding keeps
the isolated system and the environment from becoming strongly entangled (i.e.,
orthogonal states of the environment are correlated to nearly identical states of
the isolated system).

The experimenter E and detectors D in many of these diagrams are assumed
to belong to the macroscopic laboratory environment, in which systems are not
isolated at all, and interact frequently, so that any relative superpositions are
extremely short-lived, and something approximating fuzzy global worlds emerge.

2 Example Experiments

2.1 Wigner’s Friend

In the Wigner’s Friend [1] diagram of Fig. 1, lines with dashes of different sizes
are used to demonstrate that even macroscopic systems can theoretically remain
in superposition relative to an external environment provided they are kept in
nearly perfect isolation. In this version of the gedanken experiment, we begin
with a microscopic radioisotope in a quantum superposition |ψ⟩, which the Cat
then effectively measures locally (M IC), resulting in a local superposition of
the Cat and Isotope, where |0⟩ corresponds to the Cat being alive, and |1⟩ to it
being dead. The Cat is macroscopic, and must experience being either alive or
killed, but due to the isolation of the box, it remains in superposition relative to
Schrödinger and the Friend. Thus, there are two local macroscopic worlds for
the Cat, even though Schrödinger and the Friend are each still experiencing just
one world relative to the start of the experiment. Next, Schrödinger peeks into
the box to examine the cat (MCS). This puts Schrödinger into a superposition
of having seen the cat alive and dead, so now there are two local worlds for
Schrödinger, but due to the isolation of the sealed laboratory, he remains in
superposition relative to the Friend (and note also that the memory of the
Isotope was not updated by this remote interaction). Then the Friend peeks
into the laboratory and checks with Schrödinger (MSF ), resulting in two local
worlds for the Friend. Lastly, this macroscopic state spreads rapidly through
the environment as systems interact locally and synchronize memories, which
ultimately divides each of the systems in the macroscopic environment into two
worlds with the same orthogonal indexes for the isotope, Cat, Schrödinger, and
Friend.

2.1.1 Extended Wigner’s Friend

As an aside, we can consider the question, when do we say that something
has collapsed permanently and will always be seen to have collapsed by any
observer? Specifically, even if a system collapses relative to a local observer, and
then becomes space-like separated from that observer, under what circumstances
would we still be certain that the system was not in quantum superposition
relative to the observer?
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Figure 1: A version of the Wigner’s friend gedanken experiment, beginning
with Schrödinger’s cat, but with Schrödinger himself isolated from his friend
within a sealed laboratory. The experiment emphasizes how local interactions
result in division into multiple local worlds, without affecting remote systems
at all. Before the Friend opens the lab, this naturally means the Friend and
the Schrödinger who saw a living cat would assign different quantum states to
the cat, but this all follows from the one consistent narrative that plays out in
space-time, wherein all superpositions are relative.

The general answer seems to be that macroscopic systems of sufficient com-
plexity must collapse, since the unitary operations to reverse a collapse for such
a system is so unlikely to occur as to be negligible, even though it is still possible
in theory. When such a complex system enters a superposition relative to an
observer in a particular macroscopic preferred basis, the system has collapsed
into a different orthogonal state relative to the observer in each local world, and
that operation will never be reversed.

Now, if we consider Wigner’s argument, he assumed that the experimenter
in the sealed laboratory was macroscopic, and roughly speaking, had “expe-
riences and impressions like ours.” This seems to imply the stronger form of
complexity-based collapse. So, even though Schrödinger is in superposition rel-
ative to the Friend outside the lab, Schrödinger and the Cat have entered a
macroscopic superposition that will never be reversed, and when the Friend
opens the lab, they will also enter a superposition with the same alive/dead
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macroscopic preferred basis.
Now, in several Extended Wigner’s Friend gedanken experiments [2, 3, 4],

the idea of applying unitary operations on an entire sealed laboratory from the
outside has been under significant recent consideration. In particular, the Local
Friendliness inequalities that have been recently derived assume that a macro-
scopic conscious observer can be put into a quantum superposition, while still
experiencing a collapse into just one outcome. Furthermore, a proposed experi-
ment [5] would use a human-level artificial intelligence (AI) within a macro-scale
quantum computer that purports to meet Wigner’s criterion of having “expe-
riences and impressions like ours” as the conscious observer. Then, because
the AI lives inside quantum computer, those experiences and impression can
be erased by applying the inverse of the measurement unitary that created the
experience of a collapse, returning the quantum computer to its prior state.

But now there seems to be a logical problem: If collapse of the type Wigner
was considering is the type that is defined as never being reversed, and this type
of collapse is a prerequisite for having “experiences and impressions like ours,”
then the AI in the quantum computer can never satisfy this definition because
some of its experiences will be reversed. This means that the assumption that
the AI experiences a single outcome like our own may be fundamentally flawed.

Of course, this also means if we had the technological means to put a living
person into a coherent superposition wherein they must experience a collapse
and a single outcome, and then reverse the entire operation to return the person
to their prior state, then the person would likewise fail to meet the standard of
never being reversed, even though it is fair to say they should have experiences
like any other person. This ultimately suggests that Wigner’s standard never
really made sense to begin with: There is no complexity-based condition under
which a system can be considered to have permanently collapsed, even if we have
observed that collapsed result ourselves, and thus “impressions and experienced
like our own” are still insufficient to draw the conclusion that a single definite
outcome exists relative to all observers.

2.2 Wheeler’s Delayed Choice

Wheeler’s Delayed Choice experiment [6] involves putting a single quantum
particle into a spatial superposition, and only then deciding whether to make
different path interfere, demonstrating wave behavior and erasing the informa-
tion about a unique trajectory, or to directly measure its position demonstrating
particle behavior with a unique trajectory and no wave interference. The idea
of the delay is to show the quantum particle cannot simply decide to be a par-
ticle or a wave at the moment it is put into spatial superposition, since either
behavior can be observed due to a later choice.

We give a 1D treatment where two adjacent cavities are each treated as a
quantum system with Fock space occupation number levels. A beam splitter is
represented by an H between the cavities. The case where the two paths interfere
after the particle is superposed being superposed and the path information is
erased is shown in Fig. 2 (upper left), while the case where the path is measured
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is shown in Fig. 2 (upper right). In the case with interference, a phase shifter
in one cavity can change the probabilities for the two detectors. This case in
shown Fig. 2 (lower right) and the example table is included to demonstrate
how the quantum fluid model gives a local treatment of interference effects.
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Figure 2: Experiments with a single particle and two cavities separated by a
beam splitter.
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The full treatment of these examples with multiple space-like separated de-
tectors also emphasizes that they just are another case of entanglement correla-
tions that are realized by delayed local matching, no different than the treatment
of the Bell experiment in the main text.

2.3 Interaction-Free Measurement

If a new detector D0 (bomb) is placed in the first cavity, it prevents quantum
fluid from passing, so there is no interference with fluid from the other cavity,
as shown in Fig. 2 (lower left). The setup is tuned so that if D0 were absent, all
of the fluid would go to D1. When D0 is present, a quarter of the fluid now goes
to D2, and that fluid must have traveled through the second cavity because D0

obstructs the first. This situation is called interaction-free measurement because
when D2 is observed to fire, this constitutes a measurement of the presence of
D0 in the first cavity, while the fluid particle that made it to D2 could not have
visited the first cavity en route.

A well-known version of this experiment is the Elitzur-Vaidman Bomb Tester
[6], where the role of D0 is played by an ultra-sensitive bomb that will explode
if the particle hits it, and the goal is to detect the presence or absence of this
bomb without triggering it.

2.3.1 Nondemolition Measurements and Enviromental Decoherence

To round out the discussion of the Mach-Zehnder interferometer (or our 1D
cavity simulacrum), we should also consider some other effects which reduce
or destroy the visibility of quantum interference. First, consider a quantum
nondemolition detector (QND) that is placed in cavity 1, which detects the
presence of the particle without absorbing or deflecting it. This particle and
QND become entangled, and then the signal from the QND becomes entangled
with the experimenter. This results in four local worlds for the experimenter.
Of the two local worlds where the QND detected the particle, one saw the
particle at D1 and the other at D2, and likewise for the two where the QND did
not detect the particle. In either case, the ensemble statistics show that each
detector fires half the time, meaning the visibility of interference is zero.

Although it is somewhat less obvious, environmental decoherence works the
same way. To see this, imagine that the QND is now just a tiny molecule that
is placed in cavity 1. The molecule becomes entangled with the particle, just
as in the other case, but now there is no macroscopic signal from the QND to
the experimenter - the experimenter never explicitly observes the state of the
molecule. However, if we presume the molecule is in contact with the labora-
tory environment, the local interactions in the environment, and the memory
synchronizations that accompany them still carry this information to the exper-
imenter, resulting in an entangled state with the same structure as before, but
without any macroscopic observation of the QND result. Either way, we get the
same ensemble statistics for the other two detectors, with no visible interference.
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The Delayed-Choice Quantum Eraser is a generalization of the QND exper-
iment, where the particle on paths 1 and/or 2 is the primary system which is
detected at an earlier time, and the particle on paths 3 and/or 4 in Fig. 3 is the
isolated microscopic QND signal, which may or may not be erased before that
particle is detected at a later time.

2.4 The Delayed-Choice Quantum Eraser

The Delayed-Choice Quantum Eraser experiment [7, 8] (Fig. 3) is an extension
of Wheeler’s Delayed Choice, where entangled particle pairs are used to delay
the choice of whether or not to let paths 1 and 2 interfere (erasure of the path
information) is delayed until even after the fluid on those paths has reached
detectors D1 and D2. After those detectors have fired, a choice is made whether
to make path 3 and 4 interfere (erasure, Fig. 3, left) or not (Fig. 3, right). Once
the ensemble data from D1 and D2 are separated into bins based on whether
D3 or D4 fired, the cases where the paths 3 and 4 were later made to interfere
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Figure 3: The Delayed Choice Quantum Eraser
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(erasure) reveal perfect constructive and destructive interference on paths 1 and
2, and the cases where paths 3 and 4 were later kept apart reveal no interference
on paths 1 and 2.

This counterintuitive experiment is an important example for the local quan-
tum treatment because it involves a mixture of spatial interference and entan-
glement effects.

2.5 Quantum Teleportation

The local quantum fluid treatment of quantum teleportation [9] is an important
example because it shows clearly how the quantum information is transported
locally through space-time.

The goal of this experiment is to transmit the information in an isolated
quantum state |ψ⟩ of system C into another system isolated quantum system B
without system C ever crossing the space between them, effectively teleporting
the coherent quantum state |ψ⟩ from system C to system B.

input
state Bell pair

detector
signal

C A B

D

output
state

B

t

xS

D

E

Figure 4: A quantum teleportation setup. Presuming the Experimenter (E)
performs the indicated unitary operation, the output state |ψ⟩ of the system B
is identical to the input state of system C. After the measurement, there are four
different local worlds for the detector and signal and the quantum information
is carried by each of those signals. The indicated unitary puts system B into
the state |ψ⟩ relative to all four local worlds of the Experimenter.
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This is done beginning with an entangled state of systems A and B. Sys-
tems A and C are then brought together and measured in an entangled joint
eigenbasis, and the macroscopic result is sent by a classical channel to system
B, as shown in Fig. 4 This measurement has four outcomes, and the detector
is macroscopic, so the detector has been divided into four local worlds, each
sending its result to B.

The quantum state of the detector signal contains the quantum information
comprising |ψ⟩, and when the macroscopic signal D arrives at system B, their
internal memories synchronize, which adds the information |ψ⟩ into system B,
and correlates each of the four worlds with a particular state of system B. In
each world, the signal D indicates which unitary needs to be applied to B in
order to put it into the quantum state |ψ⟩, which completes the protocol. We
can characterize all of those operations as a single controlled unitary coupling
UBD where D is the control system, and B the target system.
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Beam Splitter and Two Detectors (No Erasure)

Local Information Type Cavity 1 Cavity 2

External Memories (Experimenter) 1√
2
|10⟩E|1010⟩12D1D2

, 1√
2
|01⟩E|0101⟩12D1D2

Internal Memory Evolution MEM1M2H|10⟩12|0⟩D1 |0⟩D2 |00⟩E

= 1√
2

(
|1010, 10⟩+ |0101, 01⟩

)12D1D2E

Internal Memory Synch M1M2H|10⟩12|0⟩D1 |0⟩D2 |00⟩E

= 1√
2

(
|1010⟩+ |0101⟩

)12D1D2 |00⟩E

External Memories (Detect.) 1√
2
|1⟩D1

|10⟩12 ,
1√
2
|0⟩D1

|01⟩12
1√
2
|0⟩D2

|01⟩12 ,
1√
2
|1⟩D2

|10⟩12

Internal Memory Evolution M1H|10⟩12|0⟩D1 = 1√
2

(
|101⟩+ |010⟩

)12D1
M2H|10⟩12|0⟩D2 = 1√

2

(
|100⟩+ |011⟩

)12D2

Internal Memory Synch H|10⟩12|0⟩D1 = 1√
2

(
|10⟩+ |01⟩

)12|0⟩D1 H|10⟩12|0⟩D2 = 1√
2

(
|10⟩+ |01⟩

)12|0⟩D2

External Memories (Cavities) 1√
2
|1⟩1|0⟩2 ,

1√
2
|0⟩1|1⟩2

1√
2
|0⟩2|1⟩1 ,

1√
2
|1⟩2|0⟩1

Internal Memory Evolution H|10⟩12 = 1√
2

(
|10⟩+ |01⟩

)12
H|10⟩12 = 1√

2

(
|10⟩+ |01⟩

)12
Internal Memory Synch |10⟩12 |10⟩12

External Memories (Cavities) |1⟩1 |0⟩2

Internal Memory |1⟩1 |0⟩2
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Two Beam Splitters and Two Detectors (Erasure)

Local Information Type Cavity 1 Cavity 2

External Memories (Experimenter) |10⟩E|1010⟩12D1D2

Internal Memory Evolution MEMEM1M2HH|10⟩12|0⟩D1 |0⟩D2 |00⟩E

= |1010, 10⟩12D1D2E

Internal Memory Synch M1M2HH|10⟩12|0⟩D1 |0⟩D2 |00⟩E

= |1010⟩12D1D2 |00⟩E

External Memories (Detect.) |1⟩D1

|10⟩12 , |0⟩D2

|01⟩12

Internal Memory Evolution M1HH|10⟩12|0⟩D1 = |101⟩12D1 M2HH|10⟩12|0⟩D2 = |100⟩12D2

Internal Memory Synch HH|10⟩12|0⟩D1 = |10⟩12|0⟩D1 HH|10⟩12|0⟩D2 = |10⟩12|0⟩D2

External Memories (Cavities) |1⟩1|0⟩2 |0⟩2|1⟩1

Internal Memory Evolution HH|10⟩12 = |10⟩12 HH|10⟩12 = |10⟩12

Internal Memory Synch H|10⟩12 = 1√
2

(
|10⟩+ |01⟩

)12
H|10⟩12 = 1√

2

(
|10⟩+ |01⟩

)12
External Memories (Cavities) 1√

2
|1⟩1|0⟩2 ,

1√
2
|0⟩1|1⟩2

1√
2
|0⟩2|1⟩1 ,

1√
2
|1⟩2|0⟩1

Internal Memory Evolution H|10⟩12 = 1√
2

(
|10⟩+ |01⟩

)12
H|10⟩12 = 1√

2

(
|10⟩+ |01⟩

)12
Internal Memory Synch |10⟩12 |10⟩12

External Memories (Cavities) |1⟩1 |0⟩2

Internal Memory |1⟩1 |0⟩2
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A Phase Shifter Between Two Beam Splitters with Two Detectors

Local Information Type Cavity 1 Cavity 2

External Memories (Experimenter) cos(ϕ2 )|10⟩
E
|1010⟩12D1D2

, i sin(ϕ2 )|01⟩
E
|0101⟩12D1D2

Internal Memory Evolution MEM1M2HP1H|10⟩12|0⟩D1 |0⟩D2 |00⟩E

=
(
cos(ϕ2 )|1010, 10⟩+ i sin(ϕ2 )|0101, 01⟩

)12D1D2E

Internal Memory Synch M1M2HP1H|10⟩12|0⟩D1 |0⟩D2 |00⟩E

=
(
cos(ϕ2 )|1010⟩+ i sin(ϕ2 )|0101⟩

)12D1D2 |00⟩E

External Memories (Detect.) cos(ϕ2 )|1⟩
D1

|10⟩12 , i sin(
ϕ
2 )|0⟩

D1

|01⟩12 cos(ϕ2 )|0⟩
D2

|10⟩12 , i sin(
ϕ
2 )|1⟩

D2

|01⟩12

Internal Memory Evolution M1HP1H|10⟩12|0⟩D1 M2HP1H|10⟩12|0⟩D2

=
(
cos(ϕ2 )|101⟩+ i sin(ϕ2 )|010⟩

)12D1
=

(
cos(ϕ2 )|100⟩+ i sin(ϕ2 )|011⟩

)12D2

Internal Memory Synch HP1H|10⟩12|0⟩D1 HP1H|10⟩12|0⟩D2

=
(
cos(ϕ2 )|10⟩+ i sin(ϕ2 )|01⟩

)12|0⟩D1 =
(
cos(ϕ2 )|10⟩+ i sin(ϕ2 )|01⟩

)12|0⟩D2

External Memories (Cavities) cos(ϕ2 )|1⟩
1
|0⟩2 , i sin(

ϕ
2 )|0⟩

1
|1⟩2 cos(ϕ2 )|0⟩

2
|1⟩1 , i sin(

ϕ
2 )|1⟩

2
|0⟩1

Internal Memory Evolution HP1H|10⟩12 HP1H|10⟩12

=
(
cos(ϕ2 )|10⟩+ i sin(ϕ2 )|01⟩

)12
=

(
cos(ϕ2 )|10⟩+ i sin(ϕ2 )|01⟩

)12
Internal Memory Synch P1H|10⟩12 = 1√

2

(
eiϕ|10⟩+ |01⟩

)12
P1H|10⟩12 = 1√

2

(
eiϕ|10⟩+ |01⟩

)12
External Memories (Cavities) 1√

2
eiϕ|1⟩1|0⟩2 ,

1√
2
|0⟩1|1⟩2

1√
2
|0⟩2|1⟩1 ,

1√
2
|1⟩2|0⟩1

Internal Memory Evolution P1H|10⟩12 = 1√
2

(
eiϕ|10⟩+ |01⟩

)12
H|10⟩12 = 1√

2

(
|10⟩+ |01⟩

)12
External Memories (Cavities) 1√

2
|1⟩1|0⟩2 ,

1√
2
|0⟩1|1⟩2

1√
2
|0⟩2|1⟩1 ,

1√
2
|1⟩2|0⟩1

Internal Memory Evolution H|10⟩12 = 1√
2

(
|10⟩+ |01⟩

)12
H|10⟩12 = 1√

2

(
|10⟩+ |01⟩

)12
Internal Memory Synch |10⟩12 |10⟩12

External Memories (Cavities) |1⟩1 |0⟩2

Internal Memory |1⟩1 |0⟩2
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Interaction-Free Measurement (The Elitzur-Vaidman Bomb Tester)

Local Information Type Cavity 1 Cavity 2

External Memories (Exper.) 1√
2
|100⟩E|00100⟩12D0D1D2

, 1
2 |010⟩

E
|10010⟩12D0D1D2

,

− 1
2 |001⟩

E
|01001⟩12D0D1D2

Internal Memory Evolution MEM1M2HM0H|10⟩12|0⟩D1 |0⟩D2 |000⟩E

= 1√
2

(
|00100, 100⟩

+ 1√
2

(
|10010, 010⟩ − |01001, 001⟩

))12D0D1D2,E

Internal Memory Synch M1M2HM0H|10⟩12|0⟩D1 |0⟩D2 |000⟩E

= 1√
2

(
|00100⟩+ 1√

2

(
|10010⟩ − |01001⟩

))12D0D1D2

⊗|000⟩E

External Memories (Detect.) 1√
2
|0⟩D1

|01⟩12D0
, 1

2 |1⟩
D1

|00⟩12D0
, − 1

2 |0⟩
D1

|10⟩12D0

1√
2
|0⟩D2

|01⟩12D0
, 1

2 |0⟩
D2

|10⟩12D0
, − 1

2 |1⟩
D2

|00⟩12D0

Internal Memory Evolution M1HM0H|10⟩12|0⟩D1 M2HM0H|10⟩12|0⟩D2

= 1√
2

(
|0010⟩+ 1√

2

(
|1001⟩ − |0100⟩

))12D0D1

= 1√
2

(
|0010⟩+ 1√

2

(
|1000⟩ − |0101⟩

))12D0D2

Internal Memory Synch HM0H|10⟩12|0⟩D1 HM0H|10⟩12|0⟩D2

= 1√
2

(
|001⟩+ 1√

2

(
|100⟩ − |010⟩

))12D0

|0⟩D1 = 1√
2

(
|001⟩+ 1√

2

(
|100⟩ − |010⟩

))12D0

|0⟩D2

External Memories (Cavities) 1√
2
|0⟩1|01⟩2D0

, 1
2 |1⟩

1
|00⟩2D0

, − 1
2 |0⟩

1
|10⟩2D0

1√
2
|0⟩2|01⟩1D0

, 1
2 |0⟩

2
|10⟩1D0

, − 1
2 |1⟩

2
|00⟩1D0

Internal Memory Evolution HM0H|10⟩12 HM0H|10⟩12

= 1√
2

(
|001⟩+ 1√

2

(
|100⟩ − |010⟩

))12D0

= 1√
2

(
|001⟩+ 1√

2

(
|100⟩ − |010⟩

))12D0

Internal Memory Synch M0H|10⟩12|0⟩D0 M0H|10⟩12|0⟩D0

= 1√
2

(
|001⟩+ |010⟩

)12D0
= 1√

2

(
|001⟩+ |010⟩

)12D0

External Memories (Cavities) 1√
2
|0⟩1|01⟩2D0

, 1√
2
|0⟩1|10⟩2D0

1√
2
|0⟩2|1⟩1 ,

1√
2
|1⟩2|0⟩1

Internal Memory Evolution M0H|10⟩12|0⟩D0 = 1√
2

(
|001⟩+ |010⟩

)12D0
H|10⟩12 = 1√

2

(
|10⟩+ |01⟩

)12
Internal Memory Synch H|10⟩12|0⟩D0 = 1√

2

(
|10⟩+ |01⟩

)12|0⟩D0 H|10⟩12 = 1√
2

(
|10⟩+ |01⟩

)12
External Memories (Cavities) 1√

2
|1⟩1|0⟩2 ,

1√
2
|0⟩1|1⟩2

1√
2
|0⟩2|1⟩1 ,

1√
2
|1⟩2|0⟩1

Internal Memory Evolution H|10⟩12 = 1√
2

(
|10⟩+ |01⟩

)12
H|10⟩12 = 1√

2

(
|10⟩+ |01⟩

)12
Internal Memory Synch |10⟩12 |10⟩12

External Memories (Cavities) |1⟩1 |0⟩2

Internal Memory |1⟩1 |0⟩2
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Delayed Choice Quantum Eraser (No Erasure)

External Memories (Exper.) 1
2 |1010⟩

E
|10101010⟩1234D1234

, 1
2 |0110⟩

E
|01100110⟩1234D1234

,
1
2 |0110⟩

E
|01100110⟩1234D1234

, − 1
2 |1001⟩

E
|10011001⟩1234D1234

Internal Memory Evolution MEM1M2M3M4H
12S1S2H

12

×|10⟩12|0⟩3|0⟩4|0⟩D1 |0⟩D2 |0⟩D3 |0⟩D4 |0000⟩E
= 1

2

(
|10101010, 1010⟩+ |01100110, 0110⟩

+|01010101, 0101⟩ − |10011001, 1001⟩
)1234D1234E

Internal Memory Synch M1M2M3M4H
12S1S2H

12

×|10⟩12|0⟩3|0⟩4|0⟩D1 |0⟩D2 |0⟩D3 |0⟩D4 |0000⟩E
= 1

2

(
|10101010⟩+ |01100110⟩

+|01010101⟩ − |10011001⟩
)1234D1D2D3D4 ⊗ |0000⟩E

External Memories (Detect.) 1
2 |1⟩

D1

|1010⟩1234 ,
1
2 |0⟩

D1

|0110⟩1234 ,
1√
2
|1⟩D3

|101⟩123 ,
1√
2
|0⟩D3

|010⟩123
1
2 |0⟩

D1

|0101⟩1234 , −
1
2 |1⟩

D1

|1001⟩1234

1
2 |0⟩

D2

|1010⟩1234 ,
1
2 |1⟩

D2

|0110⟩1234 ,
1√
2
|0⟩D4

|100⟩124 ,
1√
2
|1⟩D4

|011⟩124
1
2 |1⟩

D2

|0101⟩1234 , −
1
2 |0⟩

D2

|1001⟩1234

Internal Memory Evolution M1H
12S1S2H

12|10⟩12|0⟩3|0⟩4|0⟩D1 M3S1H
12|10⟩12|0⟩3|0⟩D3

= 1
2

(
|10101⟩+ |01100⟩+ |01010⟩ − |10011⟩

)1234D1
, = 1√

2

(
|1011⟩+ |0100⟩

)123D3
,

M2H
12S1S2H

12|10⟩12|0⟩3|0⟩4|0⟩D2 M4S2H
12|10⟩12|0⟩4|0⟩D4

= 1
2

(
|10100⟩+ |01101⟩+ |01011⟩ − |10010⟩

)1234D2
= 1√

2

(
|1000⟩+ |0111⟩

)124D4

Internal Memory Synch H12S1S2H
12|10⟩12|0⟩3|0⟩4|0⟩D1 S1H

12|10⟩12|0⟩3|0⟩D3

= 1
2

(
|1010⟩+ |0110⟩+ |0101⟩ − |1001⟩

)1234|0⟩D1 , = 1√
2

(
|101⟩+ |010⟩

)123|0⟩D3 ,

H12S1S2H
12|10⟩12|0⟩3|0⟩4|0⟩D2 S2H

12|10⟩12|0⟩4|0⟩D4

= 1
2

(
|1010⟩+ |0110⟩+ |0101⟩ − |1001⟩

)1234|0⟩D2 = 1√
2

(
|100⟩+ |011⟩

)124|0⟩D4

External Memories (Cavities) 1
2 |1⟩

1
|010⟩234 ,

1
2 |0⟩

1
|110⟩234 ,

1
2 |0⟩

1
|101⟩234 , −

1
2 |1⟩

1
|001⟩234

1√
2
|1⟩3|10⟩12 ,

1√
2
|0⟩3|01⟩12

1
2 |0⟩

2
|110⟩134 ,

1
2 |1⟩

2
|010⟩134 ,

1
2 |1⟩

2
|001⟩134 , −

1
2 |0⟩

2
|101⟩134

1√
2
|0⟩4|10⟩12 ,

1√
2
|1⟩4|01⟩12

Internal Memory Evolution H12S1S2H
12|10⟩12|0⟩3|0⟩4

= 1
2

(
|1010⟩+ |0110⟩+ |0101⟩ − |1001⟩

)1234
Internal Memory Synch S1S2H

12|10⟩12|0⟩3|0⟩4

= 1√
2

(
|1010⟩+ |0101⟩

)1234
External Memories (Cavities) 1√

2
|1⟩1|01⟩23 ,

1√
2
|0⟩1|10⟩23

1√
2
|0⟩2|10⟩14 ,

1√
2
|1⟩2|01⟩14

1√
2
|1⟩3|10⟩12 ,

1√
2
|0⟩3|01⟩12

1√
2
|0⟩4|10⟩12 ,

1√
2
|1⟩4|01⟩12

Internal Memory Evolution S1H
12|10⟩12|0⟩3 = 1√

2

(
|101⟩+ |010⟩

)123
S2H

12|10⟩12|0⟩4 = 1√
2

(
|100⟩+ |011⟩

)124
Internal Memory Synch H12|10⟩12|0⟩3 = 1√

2

(
|100⟩+ |010⟩

)12
H12|10⟩12|0⟩4 = 1√

2

(
|100⟩+ |010⟩

)124
External Memories (Cavities) 1√

2
|1⟩1|0⟩2 ,

1√
2
|0⟩1|1⟩2

1√
2
|0⟩2|1⟩1 ,

1√
2
|1⟩2|0⟩1

Internal Memory Evolution H|10⟩12 = 1√
2

(
|10⟩+ |01⟩

)12
H|10⟩12 = 1√

2

(
|10⟩+ |01⟩

)12
Internal Memory Synch |10⟩12 |10⟩12
External Memories (Cavities) |1⟩1 |0⟩2
Internal Memory |1⟩1 |0⟩2
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Delayed Choice Quantum Eraser (Erasure)

External Memories (Exper.) 1√
2
|1010⟩E|10101010⟩1234D1234

, 1√
2
|0101⟩E|01010101⟩1234D1234

,

Internal Memory Evolution MEM1M2M3M4H
12H34S1S2H

12

⊗|10⟩12|0⟩3|0⟩4|0⟩D1 |0⟩D2 |0⟩D3 |0⟩D4 |0000⟩E
= 1√

2

(
|10101010, 1010⟩

+|01010101, 0101⟩
)1234D1234E

Internal Memory Synch M1M2M3M4H
12H34S1S2H

12

⊗|10⟩12|0⟩3|0⟩4|0⟩D1 |0⟩D2 |0⟩D3 |0⟩D4 |0000⟩E

= 1√
2

(
|10101010⟩+|01010101⟩

)1234D1234 ⊗ |0000⟩E

External Memories (Detect.) 1
2 |1⟩

D1

|1010⟩1234 ,
1
2 |0⟩

D1

|0110⟩1234 ,
1
2 |1⟩

D3

|1010⟩1234 ,
1
2 |0⟩

D3

|1001⟩1234
1
2 |0⟩

D1

|0101⟩1234 , −
1
2 |1⟩

D1

|1001⟩1234
1
2 |0⟩

D3

|0101⟩1234 , −
1
2 |1⟩

D3

|0110⟩1234

1
2 |0⟩

D2

|1010⟩1234 ,
1
2 |1⟩

D2

|0110⟩1234 ,
1
2 |0⟩

D4

|1010⟩1234 ,
1
2 |1⟩

D4

|1001⟩1234 ,
1
2 |1⟩

D2

|0101⟩1234 , −
1
2 |0⟩

D2

|1001⟩1234
1
2 |1⟩

D4

|0101⟩1234 , −
1
2 |0⟩

D4

|0110⟩1234

Internal Memory Evolution M1H
12S1S2H

12|10⟩12|0⟩3|0⟩4|0⟩D1 M3H
34S1S2H

12|10⟩12|0⟩3|0⟩4|0⟩D3

= 1
2

(
|10101⟩+ |01100⟩+ |01010⟩ − |10011⟩

)1234D1
, = 1

2

(
|10101⟩+ |10010⟩+ |01010⟩ − |01101⟩

)1234D3
,

M2H
34S1S2H

12|10⟩12|0⟩3|0⟩4|0⟩D2 M4H
12S1S2H

12|10⟩12|0⟩3|0⟩4|0⟩D4

= 1
2

(
|10100⟩+ |01101⟩+ |01011⟩ − |10010⟩

)1234D2
= 1

2

(
|10100⟩+ |10011⟩+ |01011⟩ − |01100⟩

)1234D4

Internal Memory Synch H12S1S2H
12|10⟩12|0⟩3|0⟩4|0⟩D1 H34S1S2H

12|10⟩12|0⟩3|0⟩4|0⟩D3

= 1
2

(
|1010⟩+ |0110⟩+ |0101⟩ − |1001⟩

)1234|0⟩D1 , = 1
2

(
|1010⟩+ |1001⟩+ |0101⟩ − |0110⟩

)1234|0⟩D3 ,

H12S1S2H
12|10⟩12|0⟩3|0⟩4|0⟩D2 H34S1S2H

12|10⟩12|0⟩3|0⟩4|0⟩D4

= 1
2

(
|1010⟩+ |0110⟩+ |0101⟩ − |1001⟩

)1234|0⟩D2 = 1
2

(
|1010⟩+ |1001⟩+ |0101⟩ − |0110⟩

)1234|0⟩D4

External Memories (Cavities) 1
2 |1⟩

1
|010⟩234 ,

1
2 |0⟩

1
|110⟩234 ,

1
2 |0⟩

1
|101⟩234 , −

1
2 |1⟩

1
|001⟩234

1
2 |1⟩

3
|100⟩124 ,

1
2 |0⟩

3
|101⟩124 ,

1
2 |0⟩

3
|011⟩124 , −

1
2 |1⟩

3
|010⟩124

1
2 |0⟩

2
|110⟩134 ,

1
2 |1⟩

2
|010⟩134 ,

1
2 |1⟩

2
|001⟩134 , −

1
2 |0⟩

2
|101⟩134

1
2 |0⟩

4
|101⟩123 ,

1
2 |1⟩

4
|100⟩123 ,

1
2 |1⟩

4
|010⟩123 , −

1
2 |0⟩

4
|011⟩123

Internal Memory Evolution H12S1S2H
12|10⟩12|0⟩3|0⟩4 H34S1S2H

12|10⟩12|0⟩3|0⟩4

= 1
2

(
|1010⟩+ |0110⟩+ |0101⟩ − |1001⟩

)1234
= 1

2

(
|1010⟩+ |1001⟩+ |0101⟩ − |0110⟩

)1234
Internal Memory Synch S1S2H

12|10⟩12|0⟩3|0⟩4 S1S2H
12|10⟩12|0⟩3|0⟩4

= 1√
2

(
|1010⟩+ |0101⟩

)1234
= 1√

2

(
|1010⟩+ |0101⟩

)1234
External Memories (Cavities) 1√

2
|1⟩1|01⟩23 ,

1√
2
|0⟩1|10⟩23

1√
2
|0⟩2|10⟩14 ,

1√
2
|1⟩2|01⟩14

1√
2
|1⟩3|10⟩12 ,

1√
2
|0⟩3|01⟩12

1√
2
|0⟩4|10⟩12 ,

1√
2
|1⟩4|01⟩12

Internal Memory Evolution S1H
12|10⟩12|0⟩3 = 1√

2

(
|101⟩+ |010⟩

)123
S2H

12|10⟩12|0⟩4 = 1√
2

(
|100⟩+ |011⟩

)124
Internal Memory Synch H12|10⟩12|0⟩3 = 1√

2

(
|100⟩+ |010⟩

)12
H12|10⟩12|0⟩4 = 1√

2

(
|100⟩+ |010⟩

)124
External Memories (Cavities) 1√

2
|1⟩1|0⟩2 ,

1√
2
|0⟩1|1⟩2

1√
2
|0⟩2|1⟩1 ,

1√
2
|1⟩2|0⟩1

Internal Memory Evolution H|10⟩12 = 1√
2

(
|10⟩+ |01⟩

)12
H|10⟩12 = 1√

2

(
|10⟩+ |01⟩

)12
Internal Memory Synch |10⟩12 |10⟩12

External Memories (Cavities) |1⟩1 |0⟩2

Internal Memory |1⟩1 |0⟩2
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Quantum Teleportation

Local Information Type

External Memories 1
2 |0⟩

D

|Φ+⟩AC
(
a|0⟩+b|1⟩

)B ,
1
2 |1⟩

D

|Φ−⟩AC
(
a|0⟩+b|1⟩

)B ,
1
2

(
a|0⟩+ b|1⟩

)B
|Φ+⟩AC |0⟩D ,

1
2 |2⟩

D

|Ψ+⟩AC
(
a|0⟩+b|1⟩

)B ,
1
2 |3⟩

D

|Ψ−⟩AC
(
a|0⟩+b|1⟩

)B
1
2

(
a|0⟩+ b|1⟩

)B
|Φ−⟩AC |1⟩D ,

1
2

(
a|0⟩+ b|1⟩

)B
|Ψ+⟩AC |2⟩D ,

1
2

(
a|0⟩+ b|1⟩

)B
|Ψ−⟩AC |3⟩D ,

Internal Memory Evolution UBDMACDUAB |00⟩AB
(
a|0⟩+ b|1⟩

)C |0⟩D
(Teleportation Complete) = 1

2

(
|Φ+⟩AC |0⟩D + |Φ−⟩AC |1⟩D + |Ψ+⟩AC |2⟩D + |Ψ−⟩AC |3⟩D

)
⊗
(
a|0⟩+ b|1⟩

)B
Internal Memory Synch MACDUAB |00⟩AB

(
a|0⟩+ b|1⟩

)C |0⟩D
(D and B meet) = 1

2

(
|Φ+⟩AC |0⟩D

(
a|0⟩+ b|1⟩

)B
+ |Φ−⟩AC |1⟩D

(
a|0⟩ − b|1⟩

)B
+|Ψ+⟩AC |2⟩D

(
a|1⟩+ b|0⟩

)B
+ |Ψ−⟩AC |3⟩D

(
a|1⟩ − b|0⟩

)B)

External Memories 1
2 |0⟩

D

|Φ+⟩AC
(
a|0⟩+b|1⟩

)B ,
1
2 |1⟩

D

|Φ−⟩AC
(
a|0⟩−b|1⟩

)B ,
1√
2
|0⟩B|00⟩AB ,

1√
2
|1⟩B|11⟩AB

1
2 |2⟩

D

|Ψ+⟩AC
(
a|1⟩+b|0⟩

)B ,
1
2 |3⟩

D

|Ψ−⟩AC
(
a|1⟩−b|0⟩

)B

Internal Memory Evolution MACDUAB |00⟩AB
(
a|0⟩+ b|1⟩

)C |0⟩D UAB |00⟩AB = 1√
2

(
|00⟩+ |11⟩

)AB

= 1
2

(
|Φ+⟩AC |0⟩D

(
a|0⟩+ b|1⟩

)B
+ |Φ−⟩AC |1⟩D

(
a|0⟩ − b|1⟩

)B
+|Ψ+⟩AC |2⟩D

(
a|1⟩+ b|0⟩

)B
+ |Ψ−⟩AC |3⟩D

(
a|1⟩ − b|0⟩

)B)
Internal Memory Synch UAB |00⟩AB

(
a|0⟩+ b|1⟩

)C |0⟩D UAB |00⟩AB = 1√
2

(
|00⟩+ |11⟩

)AB

(A meets C and D) = 1√
2

(
|00⟩+ |11⟩

)AB(
a|0⟩+ b|1⟩

)C |0⟩D
External Memories

(
a|0⟩+ b|1⟩

)C |0⟩D 1√
2
|0⟩A|00⟩AB ,

1√
2
|1⟩A|11⟩AB ,

(arbitrary basis) 1√
2
|0⟩B|00⟩AB ,

1√
2
|1⟩B|11⟩AB

Internal Memory Evolution
(
a|0⟩+ b|1⟩

)C |0⟩D UAB |00⟩AB = 1√
2

(
|00⟩+ |11⟩

)AB

Internal Memory Synch
(
a|0⟩+ b|1⟩

)C |0⟩D |00⟩AB

External Memories
(
a|0⟩+ b|1⟩

)C |0⟩D |0⟩A, |0⟩B

Internal Memory
(
a|0⟩+ b|1⟩

)C |0⟩D |0⟩A, |0⟩B

7



Wigner’s Friend

Local Info Type Isotope Cat Schrödinger Friend

Ext. Mem. 1√
2
|0⟩I|00⟩IC ,

1√
2
|1⟩I|11⟩IC

1√
2
|0⟩C|000⟩ICS ,

1√
2
|1⟩C|111⟩ICS

1√
2
|0⟩S|0000⟩ICSF ,

1√
2
|1⟩S|1111⟩ICSF

1√
2
|0⟩F|0000⟩ICSF ,

1√
2
|1⟩F|1111⟩ICSF

Int. Mem. Evol. M IC |ψ⟩I |0⟩C MCSM IC |ψ⟩I |0⟩C |0⟩S MSFMCSM IC |ψ⟩I |0⟩C |0⟩S |0⟩F MSFMCSM IC |ψ⟩I |0⟩C |0⟩S |0⟩F

= 1√
2

(
|00⟩+ |11⟩

)IC
= 1√

2

(
|000⟩+ |111⟩

)ICS
= 1√

2

(
|0000⟩+ |1111⟩

)ICSF
= 1√

2

(
|0000⟩+ |1111⟩

)ICSF

Int. Mem. Synch M IC |ψ⟩I |0⟩C MCSM IC |ψ⟩I |0⟩C |0⟩S MCSM IC |ψ⟩I |0⟩C |0⟩S |0⟩F MCSM IC |ψ⟩I |0⟩C |0⟩S |0⟩F

= 1√
2

(
|00⟩+ |11⟩

)IC
= 1√

2

(
|000⟩+ |111⟩

)ICS
= 1√

2

(
|000⟩+ |111⟩

)ICS |0⟩F = 1√
2

(
|000⟩+ |111⟩

)ICS |0⟩F

Ext. Mem. 1√
2
|0⟩I|00⟩IC ,

1√
2
|1⟩I|11⟩IC

1√
2
|0⟩C|000⟩ICS ,

1√
2
|1⟩C|111⟩ICS

1√
2
|0⟩S|000⟩ICS ,

1√
2
|1⟩S|111⟩ICS |0⟩F

Int. Mem. Evol. M IC |ψ⟩I |0⟩C MCSM IC |ψ⟩I |0⟩C |0⟩S MCSM IC |ψ⟩I |0⟩C |0⟩S |0⟩F

= 1√
2

(
|00⟩+ |11⟩

)IC
= 1√

2

(
|000⟩+ |111⟩

)ICS
= 1√

2

(
|000⟩+ |111⟩

)ICS

Int. Mem. Synch M IC |ψ⟩I |0⟩C M IC |ψ⟩I |0⟩C |0⟩S M IC |ψ⟩I |0⟩C |0⟩S |0⟩F

= 1√
2

(
|00⟩+ |11⟩

)IC
= 1√

2

(
|00⟩+ |11⟩

)IC |0⟩S = 1√
2

(
|00⟩+ |11⟩

)IC |0⟩S
Ext. Mem. 1√

2
|0⟩I|00⟩IC ,

1√
2
|1⟩I|11⟩IC

1√
2
|0⟩C|00⟩IC ,

1√
2
|1⟩C|11⟩IC |0⟩S |0⟩F

Int. Mem. Evol. M IC |ψ⟩I |0⟩C M IC |ψ⟩I |0⟩C |0⟩S |0⟩F

= 1√
2

(
|00⟩+ |11⟩

)IC
= 1√

2

(
|00⟩+ |11⟩

)IC
Int. Mem. Synch |ψ⟩I |0⟩C |ψ⟩I |0⟩C |0⟩S |0⟩F

Ext. Mem. |ψ⟩I |0⟩C |0⟩S |0⟩F

Int. Mem. |ψ⟩I |0⟩C |0⟩S |0⟩F
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