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1. Clustering Verification 
 
This section aims to assess the computational performance of the proposed general clustering 

algorithm (full-scale model) and the heuristic algorithm. For instance, a case study of an energy 

hub system’s hourly heat and electricity demands during a year is used for illustration and 

evaluation purposes (Maroufmashat et al., 2015). Figures S1 and S2 show the heat and 

electricity demands, respectively . 

 

Figure S1. Annual hourly heat demand (Maroufmashat et al., 2015). 

 



 

Figure S2. Annual hourly electricity demand (Maroufmashat et al., 2015). 

 
Raw time-series data such as electricity and heat demand are arranged into the candidate 

periods (considered to be 365 days for 1 year, each day consisting of 24 hours). This reordering 

process is shown in the matrix shown in Figure S3. As shown in the figure, the columns 

quantify the number of time steps multiple (i.e., 24 hours) while the rows quantify the number 

of periods (i.e., 365 days). A single row represents a candidate period (one day). Electricity 

and heat demand data for certain residential jurisdictions were collected from (Maroufmashat 

et al., 2015) and increased by a factor of 4 for model verification purposes. For example, the 

total number of data points of each attribute (parameter) over one year is 8760. Accordingly, a 

typical day approach application would yield 365 since to each 24 hours corresponds one time 

step. Raw data of electricity and heat demands are reshaped into a new matrix where the 

number of rows represents the number of days in one year (365 days) and the number of 

columns represent the number of hours in one day (24 hours). 

 

Figure S3. Process of rearranging the dimension of wind speed and electric demand. 

The reshaped electricity demand and heat demand profile are displayed in Figure S4. Error! 

Reference source not found. 
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Figure S4. Processed annual electricity (blue lines) and heat demand (red lines) data 

The weight factor combinations used to construct the Pareto frontier are reported in Table S1. 

Table S1. Multi-objective function weight factors. 

Weight Factor Electricity Heat 
1 0.2 0.8 
2 0.3 0.7 
3 0.4 0.6 
4 0.5 0.5 
5 0.6 0.4 
6 0.7 0.3 
7 0.8 0.2 
8 0.9 0.1 

 

Furthermore, the multi-attribute model outputs were assessed using the heuristic clustering 

algorithm. An entire year (365 days) demand data was clustered into 4,5 and 6 clusters using 

normal and sequence approaches. The weight factor combinations (see Table S1) were 

considered to generate each cluster run’s Pareto frontier. Twenty-five scenarios were generated 



per run. The GAMS/CPLEX (GAMS Development Corporation, 2009) solver was used to 

perform the runs on an Intel(R) Xeon(R) 2.4 GHz (2 processors), 16 GB RAM workstation. 

The algorithm tolerance was set to 10-3. The solution times are reported in Table S2. It is worth 

noticing that the solution time for sequence clustering is slightly shorter than normal clustering 

due to the extra constraint sets. Also, an increase in the number of clusters expands the model 

size, and consequent solution time. In general, the model is challenging to solve even with a 

small number of binary variables.  

Table S2. Heuristic algorithm solution times. 

Average 
solution time per 
scenario (min) 

Normal clustering Sequence clustering 
4 5 6 4 5 6 
7.03 16.3 26.6 5.98 12.45 23 

 

Pareto frontiers for normal and sequence clustering are illustrated in Figure S5. The Pareto 

frontiers considered all weight factor combinations shown in Table S1 for all runs. As depicted 

in Figure S5, increasing the number of clusters has a positive effect over the objective function 

value (IAE) in both normal and sequence clustering.  

 

Figure S5. Pareto frontiers for normal and sequence clustering. 
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A relative error function is employed as validation measure between the cluster and load curves 

to attain insightful information. This is given as follows: 

𝐸𝑅𝑅𝑂𝑅 , , = , ,,         (S.1) 

 

where ERROR , ,  is the relative error between the cluster and load curves. This metric 

basically represents the integral absolute error (IAE) or  L1 principle scaled by the cluster curve 

to evaluate performance independently from the scale of the data set. It also allows comparisons 

in demand curves significantly differing in magnitude. This error measurement criteria is 

widely applied in utility forecasting despite the fact that high error values may arise from 

anomalies instead of simple incorrect predictions (Alhameli,et al., 2019). In order to measure curve 

similarities within same clusters and dissimilarities between separate clusters, it was calculated 

the error standard deviation. Average results of relative error for all 𝑑 days, ℎ hours and weight 

factors (i.e., 0.5) are presented in Table S3.  

Table S3. Computational statistical errors for normal and sequence clustering (365 days-4,5 
and 6 clusters) 

Clusters 

Electricity Heat 

Avg Std IAE 
(MWh) Avg Std IAE 

(MWh) 

Normal 

4 0.073 0.076 49.3 7.667 36.510 124.500 

5 0.070 0.077 44.5 6.155 2.475 112.125 

6 0.059 0.063 38.75 1.469 7.372 103.285 

Sequence 

4 0.084 0.094 72.925 11.414 76.977 165.250 

5 0.080 0.087 62.95 6.601 29.838 156.875 

6 0.072 0.084 59.95 5.149 23.637 148.625 

  



Table S3 results show that normal clustering outperforms sequence clustering in terms of 

objective function value, error average, and standard deviation. This is due to the extra 

sequence restriction (constraints) that might be a requirement in certain decision-making 

processes. Furthermore, it is worth noticing that heat demand undergoes significant 

fluctuations and reaches zero values or close to zero in certain periods (see annual heat demand 

in Figure S1). Accordingly, relative error calculations were troublesome and amplified. 

Although the demand ranges from 0 to 1000 kW, the relative error calculation is still difficult. 

For example, if demand is 10 kW and the cluster value 0.1 kW; the relative error turns into 

99%. Moreover, the heat demand’s error average and standard deviation are relatively higher 

than for electricity. This given high fluctuations in heat demand due to seasonal changes such 

as low heat demand in the summer months (between May and July). 

Figure S6 shows the actual heat and electricity demand data and corresponding representative 

cluster curves using both the normal and sequence clustering approaches (4,5 and 6 normal and 

sequence clusters). The weight factor used to generate the corresponding representative cluster 

curves is 0.5 for both heat and electricity attributes. As shown in the figure, clustered data is in 

good agreement with the actual demand data. However, for heat the clustered curves have a 

slight discrepancy due to the high fluctuations in the actual heat demand, but generally follows 

the trend. Also, normal clustering curves match better the actual demand data. Despite the slight 

error associated with the clustered curves, the purpose of clustering is using a reduced size set 

of demand data that is well representative and  reflects the most probable trends and behavior 

of the original dataset. These cluster curves reduced-size demand data are used as input for 

planning, designing, and operating the energy hub model while serving to improve the 

tractability of the solution.  



 

Figure S6. Actual electricity (top) and heat demand (bottom) and their corresponding 
computed cluster curves (4,5 and 6 clusters) using normal (left) and sequence clustering 
approaches (right) for 1-year time horizon. 

 
Figures S7 to S12 illustrate the clusters and day assignments of normal and sequence clustering 

for weight factors 1 and 7 (see Table S1) along with 4, 5, and 6 clusters. Weight factor 1 and 7 

prioritize heat electricity demand, respectively. The figures clearly show that clustered curves 

are slightly affected by weight factors. The main advantage of using the weight factor approach 

is that allows clustering while emphasizing on one/or more attributes. Normal clustering offers 

more advantages in terms of flexibility. Also, it was noticed that many  electricity demands 

clusters (especially sequence clusters) overlap with each other. They correspond to different 

days while their heat demand clusters diverge. Hence, they cannot be merged into the same 

clusters. In synthesis, the use of normal clustering is recommended to minimize computational 

effort and deal with large scale models when the applications do not require sequencing. 

  



Normal Clustering: run 365 days -4 clusters 
 Weight 1 (welec = 0.2, wheat=0.8) Weight 7 (welec = 0.8, wheat=0.2) 
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Figure S7. Heat and electricity demand cluster curves with day assignment for weight factors 
1 and 8 using 4 normal clustering.  
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Normal Clustering: run 365 days -5 clusters 
 Weight 1 (welec = 0.2, wheat=0.8) Weight 7 (welec = 0.8, wheat=0.2) 

El
ec

tri
ci

ty
 

 

 

H
ea

t 

 

 

D
ay

 A
ss

ig
nm

er
nt

  

 

 

Figure S8. Heat and electricity demand cluster curves with day assignment for weight factors 
1 and 8 using 5 normal clustering.  
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Normal Clustering: run 365 days -6 clusters 
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Figure S9. Heat and electricity demand cluster curves with day assignment for weight factors 
1 and 8 using 6 normal clustering. 
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Sequence Clustering: run 365 days -4 clusters 
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Figure S10. Heat and electricity demand cluster curves with day assignment for weight factors 
1 and 8 using 4 sequence clustering. 
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Sequence Clustering: run 365 days -5 clusters 
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Figure S11. Heat and electricity demand cluster curves with day assignment for weight factors 
1 and 8 using 5 sequence clustering. 
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Sequence Clustering: run 365 days -6 clusters 
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Figure S12. Heat and electricity demand cluster curves with day assignment for weight factors 
1 and 8 using 6 sequence clustering. 
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2. Energy hub model formulation 
 
This subsection discusses the stochastic modeling for the design and operation equations of 

energy hub system under uncertain wind speeds utilizing clustered demand data (heat and 

electricity).  

The objective function in Eq (S.2) represents the total annual cost including capital cost of the 

energy hub units and their operating including fuel (gas) consumption, operation, and 

maintenance costs. The first part of the equation represents the capital cost of the energy hub 

units (i.e., first stage decision of the stochastic programming). The second part of the equation 

denotes the annual net cost from operating the energy hub (i.e., basically operational and 

maintenance and fuel consumption), which depends on the scenario of wind speed uncertainty 

realization 𝑠 with probability 𝛽 .   𝑚𝑖𝑛   𝐶𝑅𝐹 𝑦  𝐶𝐴𝑃  𝐸 + 𝑦  𝐶𝐴𝑃  𝑦  𝐶𝐴𝑃  
+ 𝛽  𝑃 , , ,  𝑂𝑀 + 𝑁𝐺 , , 𝑃𝑟𝑖𝑐𝑒  + 𝑃 , , ,  𝑂𝑀   ,   (S. 2) 

 

where u, st and wt are set of fossils fuel-based power and heat generation units, storing units 

and wind turbines units respectively. 𝑦 denotes the integer design variable that represent th 

number of each unit needed to be installed, 𝑃 , , ,  is the operational decision variable that 

represent the amount of energy flow (i denote the type of energy heat or electricity) consumed 

or produced by each energy hub unit at sth scenario and hth hour of the dth day. 𝐶𝐴𝑃 and 𝑂𝑀 

represent capital and operational and maintenance cost parameters respectively and 𝑃𝑟𝑖𝑐𝑒  

symbolizes the Natural gas price (0.325 $/m3) (Maroufmashat et al., 2015).  

The capital cost of each unit of the energy hub is obtained by summing the number of installed 

unit 𝑦 multiplied by their unit capital cost CAP ($/unit) (in the case of power and heat generation 

units (e.g. CHP and boilers) the capital cost is defined as ($/kW installed), so it is additionally 



multiplied by its rated capacities E ) and converting the present value of the capital cost to 

annuity ($/yr) by means of the capital recovery factor (CRF). Where 𝐶𝑅𝐹 = ( )( ) , 𝑟 (8%) 

and 𝑙𝑖𝑓𝑒 (25 years) denote the interest rate and the lifetime of the energy hub respectively.  

The electricity and heat demands are satisfied at any sth scenario and hth hour of day d through 

the following energy balances equations as follows Eq. (S.3)-(S.4). Electricity output is fixed 

to meet demand while heat output is allowed to exceed demand if necessary due to excess 

heat from CHP units.  

 𝑃 , , ,  +  𝑛 𝑃 ,  − 𝑃 , , , + 𝑃 , , ,   = 𝐿 , ,    ,           ∀ ℎ, 𝑑, 𝑠     (S. 3) ∑  𝑃 , , ,  ≥   𝐿 , ,     ,                                             ∀ ℎ, 𝑑, 𝑠                                            (S. 4)
             

where 𝐿 , ,   (kW) and 𝐿 , ,   (kW) are the hourly electricity and heat demands, 

respectively. The optimization problem is further constrained by various physical 

requirements. Each energy hub unit takes in a certain type of energy or mass flow and outputs 

a different kind of energy or mass flow. A thermodynamic efficiency is used in the following 

set of equations (Eq. (S.5)-(S.7)) to calculate the amount of utilities produced by energy hub 

units such as storing units (electrolyzer and fuel cell) power units (CHP) and heat generation 

units (i.e., boilers). The efficiency of the system depends on the condition and operating regime 

of the unit, however, for simplicity efficiencies are assumed to be constant for all operating 

conditions in this study.  𝑃 , , , = 𝑁𝐺 , , 𝜂 𝑏    ∀ ℎ, 𝑑, 𝑠, 𝑢 = 𝐶𝐻𝑃1, 𝐶𝐻𝑃2, 𝐶𝐻𝑃3, 𝑏𝑜𝑖𝑙𝑒𝑟1, 𝑏𝑜𝑖𝑙𝑒𝑟2, 𝑏𝑜𝑖𝑙𝑒𝑟3 , 𝑖 = 𝑒𝑙𝑒𝑐, ℎ𝑒𝑎𝑡   (S.5) 
 

where b is the unit conversion factor for the natural gas flowrate (10.7 kWh/m3). 

 𝐻 , , = 𝑃 , , , 𝜂           ∀ ℎ, 𝑑 , 𝑠                    (S.6)

           𝑃 , , , = 𝐻 , , 𝜂           ∀ ℎ, 𝑑 , 𝑠                (S.7) 



         

where 𝐻 , , and 𝐻 , ,  is the mass flow rate of hydrogen gas produced by electrolyzer and 

leaving the hydrogen tank respectively in (kg/hr) at sth scenario and hth hour of the dth day. The 

wind turbine, however, is not modeled using aforementioned equations. The power delivered 

by wind turbine to the electricity grid can be calculated using the following equation (da Rosa, 

2013): 

𝕡 = ⎩⎪⎨
⎪⎧ 0                                  , 𝑣 < 𝑣 _𝐶 𝜌 (𝑣 ) 𝐴𝜂                    , 𝑣 > 𝑣 ≥ 𝑣 _𝕡 ,                                               , 𝑣 _ > 𝑣 ≥  𝑣0                                       , 𝑣 ≥ 𝑣 _

           (S.8) 

where wt is a the  represents the wind turbines types considered in this case study, two wind 

turbines type where considered namely Vergent (20 kW) and Fuhrlander (30 kW) , the 

characteristic of these wind turbines can be found in (Stander, 2008) (see Figure S6 in the 

Appendix). 𝕡  is a parameter denotes the electrical power generated by one wind turbine in 

(kw) of type wt at scenario s. 𝑣  is the actual wind speed in (m/s) at scenario s. The wind speed 

scenarios as well as its corresponding probabilities from Section 2.3. are used to calculate the 

power produced by single wind turbine 𝕡 . 𝑣 _  is wind turbine specific characteristic 

represents the cut-in-speed, the minimum wind speed at which the turbine blades overcome 

friction and begin to rotate. Rated output wind speed (𝑣 ), for this speed and above, the 

wind generator is limited to its maximum design output power Cut-out-speed (𝑣 _ ) it is a 

wind speed where braking system is employed to bring the rotor to a standstill to prevent the 

wind turbine from damage. 𝜂  is the wind generator efficiency. The rotor swept area and the 

air density are represented by 𝐴  and 𝜌  respectively. 𝐂𝐩 describes the fraction of the power 

in the wind that may be converted by the turbine into mechanical work. The maximum 



achievable value of 𝐶  is 16/27. The factor 16/27 is known as the Betz limit or Betz efficiency, 

The Betz limit applies to any type of wind-driven machine (da Rosa, 2013).  

Furthermore, Eq. (S.9)-(S.12) determine the number of units that need to be installed (designed) 

in order to satisfy demand. Also, they ensure that operation of any energy hub unit at any time 

are within their corresponding capacities as follows: 

For boilers and CHP units: 𝑃 , , , ≤ 𝑦   𝐸     ∀ ℎ, 𝑑, 𝑠, 𝑢 = 𝐶𝐻𝑃1, 𝐶𝐻𝑃2, 𝐶𝐻𝑃3, 𝑏𝑜𝑖𝑙𝑒𝑟1, 𝑏𝑜𝑖𝑙𝑒𝑟2, 𝑏𝑜𝑖𝑙𝑒𝑟3 , 𝑖 = 𝑒𝑙𝑒𝑐, ℎ𝑒𝑎𝑡      (S.9)

  

For electrolyzer (Elyzr) 𝑃 , , , ≤ 𝑦   𝑧                                         ∀ ℎ, 𝑑 , 𝑠           (S.10) 

             

For fuel cell  𝑃 , , , ≤ 𝑦   𝑧                                  ∀ ℎ, 𝑑 , 𝑠             (S.11) 

             
For hydrogen tank  𝐻𝐿 , ≤ 𝑦   𝑧                                                 ∀ ℎ, 𝑑 , 𝑠         (S.12) 

             

where 𝑧  is a parameter represent the rating capacity of each energy hub unit (see Table 3 

in the main paper). 𝐻𝐿 , ,  is the amount of hydrogen stored in hydrogen tank in (kg) at the hth 

hour of the dth day. From previous equations all energy hub unit output such as power, heat or 

hydrogen must be less than or equal to the unit rating capacity. The number of wind turbines 

needed of each 𝑤𝑡 (wind turbine type) to be installed can be determine using the following 

equation. In this equation (Eq. (S.13)), the power that can be harvested by wind turbines at each 

scenario is limited by upper and lower power of single windmill (𝕡 ) multiplied by the total 

number of number wind turbines (𝑦 ). The upper (𝕡 𝑣 ) and lower (𝕡 (𝑣 ) ) power 



of single wind turbine at each scenario corresponds to the upper and lower limits of wind speed 

of each scenario. 𝑦 𝕡 𝑣  ≤  𝑃 ≤  𝑦 𝕡 𝑣    (S.13) 

Hydrogen gas flows from the electrolyzer to the hydrogen tank where it is stored, until it is 

directed to the fuel cell when there is need for power generation. In order to keep track of the 

amount of hydrogen stored at each time, a discretized dynamic mass on hydrogen entering and 

leaving the tank was applied as described in the following equations (Eq. (S.14)-(S.15)). This 

equation was designed such that for a given scenario, if the hydrogen production was high due 

to an excess in wind energy, the excess hydrogen would be stored for use at different scenarios 

that have low hydrogen production as a result of low wind power. The hydrogen level is not 

stochastic (not function of uncertain scenarios) but it accounts for all possible uncertain wind 

speed realization scenarios.  𝐻𝐿 , = 𝐻𝐿 , + ∑ 𝛽 𝐻 , , − 𝐻 , ,              ,1 <   ℎ < 24, ∀𝑑         (S.14) 𝐻𝐿 , = 𝐻𝐿 , + ∑ 𝛽 𝐻 , , − 𝐻 , ,              , ℎ = 1, 𝑑 > 1          (S.15) 

 
The second equation is added to link between the first hour of the latter day with last hour of 

the former day. It can be noticed from this equation that the input and output hydrogen flow 

rates is weighted and summed by the probability of each stochastic scenario to accounts for all 

possible scenarios.  

Since the energy storage technology cannot be charged and discharged simultaneously binary 

variables (𝑐ℎ , ,  charging status, 𝑑𝑖𝑠 , ,  discharging status) are introduced to track the on-off 

status for the electrolyzer (i.e., works as charging unit) and fuel cell (i.e., works as discharging 

unit) at each sth scenario and hth hour of the dth day. In the following equations, the big-M 

formulation is used to ensure no hydrogen and power flow occur out of the electrolyzer and 

fuel cell when they are off.  𝐻 , , ≤ 𝑐ℎ , ,   𝑀        ,                           ∀ ℎ, 𝑑 , 𝑠           (S.16) 



𝑃 , , , ≤ 𝑑𝑖𝑠 , ,   𝑀  ,                               ∀ ℎ, 𝑑 , 𝑠           (S.17) 

 
where 𝑀 is  a big number, 𝑐ℎ , ,  and 𝑑𝑖𝑠 , ,  are binary variables that represent the on and off 

states of electrolyzer and fuel cell units at each at each sth scenario and hth hour of the dth day 

respectively. In order to prevent the electrolyzer (charging status) and fuel cell (discharging 

states) from running at the same time, the following constraint is added: 𝑐ℎ , , +  𝑑𝑖𝑠 , , ≤ 1     ∀ ℎ, 𝑑 , 𝑠             (S.18) 

 

3. Further results and discussions 
 
This section presents further results, discussions, and details of the energy hub with hydrogen 

storage case study. Two subsections provide further details about two of the scenarios under 

analysis. 

3.1. Baseline Scenario 

The effect of multi-scale clustering approach of the demand data on the energy hub operational 

decision are depicted in Figure S13. Accordingly, the figure presents the energy hub total utility 

production rates for the normal and sequence clustering cases for weight factors 1, 4, and 8. 

The figures display the error associated with the total utility production using clustered cases 

relative to the original case. The figure shows that the errors in the total production rate from 

boilers are higher than the errors associated with electricity and heat production from CHP. 

This due to the Eq. (S.4) that allows the heat production to be greater than the demand whereas 

Electricity output is fixed to meet demand. On the other hand, electricity production rates using 

clustered model is very close to the original model. It can be concluded that using the clustering 

approach is an effective tool to reduce the size of the original model while maintaining good 

results. We can say that the proposed clustering multi-scale method is a trade-off between 

computational effort and data accuracy. Similarly, one can notice that increasing the number 

of clusters improves the solution quality as it closes the gap between the original (i.e., non-



clustered cases) and clustered cases. In addition, the results of weight factor 1 are much closer 

to the optimal non-clustered case because it leans towards the heat demand. As the heat demand 

shows the higher variability among utilities, prioritizing the heat demand allows keeping it 

closer to the original value. Moreover, as one could expect normal clustering showcases better 

solution quality than sequence clustering due to the additional restriction added by sequence 

clustering. The clustered cases energy hub model underestimated the installed design capacities 

of reboilers since they are cheaper (have less effect on the objective function; thus, the total 

heat rate generated by reboilers using the clustered case energy hub model are less than the 

original model).  

 

 
Figure S13. Energy hub’s utility production rates comparison between original and clustered 
model. 
 

3.2. GHG Emissions Constrained Scenario (Further Details) 

The higher number of clusters the closer the design decision variable values between the 

clustered and original model. For example, 5-normal clustering features the same number of 

CHP100 units as the original case, whereas 6-normal clustering with weight factor 1 shows the 
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exact same design of the original case. This can be clearly observed in Figure S14 which shows 

the installed power and heat generation capacity of all clustered runs with weight factor 1,4, 

and 8 along with the original model results. Moreover, the heat and electricity production rates 

from all analyzed clustered scenarios are very close to the original model while their relative 

error do not exceed 20% (see Figure S15 for details). 

 

 

 

Figure S14. Installed heat and power generation capacity for the energy hub system under the 
GHG emissions constraint. 
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Figure S15. Energy hub’s utility production rates comparison between the original and clustered 
model. 
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