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S1. Commercial polymeric membranes used in industrial CO: separation processes
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Figure S1. Commercial polymeric membranes used in industrial CO2 separation processes.
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S2. [Ch][Gly] synthesis
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Scheme 1. Metathesis reaction between choline chloride, [Ch*][Cl], and sodium hydroxide, NaOH,
in ethanol under stirring for 2 hours (Stage 1) and neutralization reaction between choline hydrox-
ide, [Ch*][OH], and glycine, to form the desirable [Ch*][Gly ] IL and water as by-product (Stage 2).

Stage 1

Stage 2

=2h

Figure S2. Choline chloride and sodium hydroxide in EtOH at t=0h and t=2h, note that NaCl pre-
cipitated as white powder (Stage 1) and choline hydroxide and glycine in EtOH at t=0h and t=2h
(Stage 2).

H and *C NMR of the synthesized [Ch*][C]] was carried out at room temperature
on a Varian 600 MHz spectrometer in D20 with tetramethylsilane as internal standard.
NMR data is reported as s = singlet, d = doublet, t = triplet, q = quatriplet and m = multiplet
or unresolved, while chemical shifts () values are given in ppm. The chemical shifts at
3.49-3.56 ppm (2H, m, CH20H), 4.03-4.10 ppm (2H, m, CH2CH:N) and 3.21 ppm (9H, s,
(CHs)3N) originate from choline cation, whereas the signal at 3.26 ppm (2H, s, CH2NH>)
from glycine anion (Figure S3). These results are consistent with literature findings [1-3].
Similar information can also be obtained from *C NMR analysis. The signals at 56.71 ppm
(CH20H), 70.33 ppm (CH2CH:N) and 58.44 ppm ((CHs)sN) are attributed to the carbon
atoms of the choline cation, while those at 46.80 ppm (CH2NH->) and 182.82 ppm (C=0) to
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carbons atoms of the glycine anion (Figure S4). These results are, also, in good agreement

with the literature [2].
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Figure S3. 'TH NMR spectra of the synthesized [Ch*][Gly] in D20.
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Figure S4. 3C NMR spectra of the synthesized [Ch*][Gly] in D20.

S3. CA-IL films preparation
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Figure S5. Composite membrane films preparation using the solution casting method.

S4. CO: and N: sorption measurements using mass loss analysis (MLA)

Figure S6. Sketch of the experimental setup that was used for the sorption measurements. 1: High
pressure gas tank; 2: cooler; 3: syringe pump; 4: oven; 5: high pressure cell.
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Figure S7. CO2 desorption from CA doped with 10% wt. [Bmim*][HSO«] at 25°C and atmospheric
pressure after exposure at a CO2 atmosphere at 35°C and 40 bar (a) and extrapolation to time zero
using the FD model (b).

S5. Degree of crystallinity calculation of the CA-IL films using XRD analysis

After subtraction of a linear background, the experimental diffraction curve was resolved
into a crystalline peak and an amorphous halo by fitting a theoretical curve. Both the crys-
talline peak and the amorphous halo were represented by a Gaussian distribution (Figure
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S8). The degree of crystallinity was calculated as the ratio of the area of the crystalline
peak to the total area [5,6].
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Figure S8. Degree of crystallinity calculation of the CA doped with 20% wt. [Bmim*][HSOx«] using
Gaussian function to determine the crystalline peak and the amorphous halo.
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