
Mathematical Formulation of the PVA Thermograms for 2, 5, and 10 K/min Heating Rates 

To formulate the mathematical models for the framework in Figure 2, it is necessary to start with the general 

mathematical expressions of artificial neural networks (ANNs) [28]. These expressions relate the predicted 

(𝑎5) and real (𝑦𝑖) output signals with the inputs and hidden neurons corresponding to them. The following are 

mathematical expressions formulating the output through hidden neurons to input neurons (backpropagation). 

 
Figure S1. Machine learning backpropagation network analysis framework showing typical input, hidden and output neurons. 

 

The sum of the weights of the output 5 (𝑧5) using Figure 2 is expressed as a function of bias (𝑏5), weights 

(𝑤9 − 𝑤12) and activation of the hidden neurons (𝑎1 − 𝑎4) as shown by Equation 1a. 

𝑧5 = 𝑏5 + 𝑤9.𝑎1 + 𝑤10.𝑎2 + 𝑤11.𝑎3 + 𝑤12.𝑎4      Eqn 1a  

The logistic function of output 5 [𝜎′(𝑧5)] also known as the Sigmoid activation (𝑎5) or predicted signal is 

expressed as  

𝑎5 =  𝜎′(𝑧5) =
1

(1+𝑒−𝑧5)
           Eqn 1b 



And the cost function (𝐶) is expressed as 

𝐶 = (𝑦𝑖 − 𝑎5)2            Eqn 1c 

 

The logistic functions and sum weight for the four hidden neurons are expressed as follows:  

𝑎1 =  𝜎′(𝑧1) =
1

(1+𝑒−𝑧1)
 & 𝑧1 = 𝑏1 + 𝑤1.𝑥1 + 𝑤2.𝑥2     Eqn 1d 

𝑎2 =  𝜎′(𝑧2) =
1

(1+𝑒−𝑧2)
 & 𝑧2 = 𝑏2 + 𝑤3.𝑥1 + 𝑤4.𝑥2     Eqn 1e 

𝑎3 =  𝜎′(𝑧3) =
1

(1+𝑒−𝑧3)
 & 𝑧3 = 𝑏3 + 𝑤5.𝑥1 + 𝑤6.𝑥2     Eqn 1f 

𝑎4 =  𝜎′(𝑧4) =
1

(1+𝑒−𝑧4)
 & 𝑧4 = 𝑏4 + 𝑤7.𝑥1 + 𝑤8.𝑥2     Eqn 1g 

where 𝑏1 − 𝑏5 and 𝑤1 − 𝑤12 are arbitrarily constants needed for predicting the output signal. Obtaining these 

values could be performed by trial and error, but this could be time consuming and tedious. Cost optimization 

is a more preferable approach and is described and mathematically expressed below: 

 

1. How much does cost depend on output 5? 

Since backpropagation ANN requires starting from the output data [26-28], the connections between the 

hidden and output layers can be referred to as linear, which is why single-layer neural networks (SNN) will 

be used to perform machine learning algorithms. As a result, a change in bias (∆𝑏) and weight (∆𝑤) is needed 

for the framework to be trained as shown in Figure 2 with Equation 2a. 

∆𝑏 = −𝑘𝑃
𝜕𝐶

𝜕𝑏
   and   ∆𝑤 = −𝑘𝑃

𝜕𝐶

𝜕𝑤
         Eqn 2a 

where 𝑘𝑃 is the learning rate, which is a value chosen for the training of the network in order to estimate the 

arbitrary constants. 

(
𝜕𝐶

𝜕𝑎5
) = 2(𝑎5 − 𝑦); (

𝜕𝑎5

𝜕𝑧5
) = 𝜎′(𝑧5) =

𝑒𝑧5

(1+𝑒𝑧5)2
; (

𝜕𝑧5

𝜕𝑤9
) = 𝑎1; (

𝜕𝑧5

𝜕𝑤10
) = 𝑎2; (

𝜕𝑧5

𝜕𝑤11
) =

𝑎3; (
𝜕𝑧5

𝜕𝑤12
) = 𝑎4  and (

𝜕𝑧5

𝜕𝑏5
) = 1.        Eqn 2b 

(
𝜕𝐶

𝜕𝑏5
) = (

𝜕𝐶

𝜕𝑎5
) (

𝜕𝑎5

𝜕𝑧5
) (

𝜕𝑧5

𝜕𝑏5
)          Eqn 2c 

(
𝜕𝐶

𝜕𝑤9
) = (

𝜕𝐶

𝜕𝑎5
) (

𝜕𝑎5

𝜕𝑧5
) (

𝜕𝑧5

𝜕𝑤9
)          Eqn 2d 

(
𝜕𝐶

𝜕𝑤10
) = (

𝜕𝐶

𝜕𝑎5
) (

𝜕𝑎5

𝜕𝑧5
) (

𝜕𝑧5

𝜕𝑤10
)         Eqn 2e 

(
𝜕𝐶

𝜕𝑤11
) = (

𝜕𝐶

𝜕𝑎5
) (

𝜕𝑎5

𝜕𝑧5
) (

𝜕𝑧5

𝜕𝑤11
)          Eqn 2f 



(
𝜕𝐶

𝜕𝑤12
) = (

𝜕𝐶

𝜕𝑎5
) (

𝜕𝑎5

𝜕𝑧5
) (

𝜕𝑧9

𝜕𝑤12
)          Eqn 2g 

        

Hence: ∆𝑏5 = −𝑘𝑃 (∑ (
𝜕𝐶

𝜕𝑏5
) 𝑁

𝑖=1 ) /𝑁   &  𝑏5(𝑁𝑒𝑤) = 𝑏5(𝑜𝑙𝑑) + ∆𝑏5   Eqn 2h 

  ∆𝑤9 = −𝑘𝑃 (∑ (
𝜕𝐶

𝜕𝑤9
) 𝑁

𝑖=1 ) /𝑁   & 𝑤9(𝑁𝑒𝑤) = 𝑤9(𝑂𝑙𝑑) + ∆𝑤9   Eqn 2i 

∆𝑤10 = −𝑘𝑃 (∑ (
𝜕𝐶

𝜕𝑤10
) 𝑁

𝑖=1 ) /𝑁   & 𝑤10(𝑁𝑒𝑤) = 𝑤10(𝑂𝑙𝑑) + ∆𝑤10  Eqn 2j 

∆𝑤11 = −𝑘𝑃 (∑ (
𝜕𝐶

𝜕𝑤11
) 𝑁

𝑖=1 ) /𝑁   & 𝑤11(𝑁𝑒𝑤) = 𝑤11(𝑂𝑙𝑑) + ∆𝑤11  Eqn 2k 

∆𝑤12 = −𝑘𝑃 (∑ (
𝜕𝐶

𝜕𝑤12
) 𝑁

𝑖=1 ) /𝑁   & 𝑤12(𝑁𝑒𝑤) = 𝑤12(𝑂𝑙𝑑) + ∆𝑤12  Eqn 2l 

 

 

2. Cost of output 5 on the hidden neurons 

In this stage, the cost is estimated by estimating how much the hidden activations affect the cost, 𝑎1 − 𝑎4. The 

mathematical expression for estimating this type of cost function is given by Equation 3a. 

(
𝜕𝐶

𝜕𝑎ℎ
) = (

𝜕𝐶

𝜕𝑎𝑗
) (

𝜕𝑎𝑗

𝜕𝑧
) (

𝜕𝑧

𝜕𝑎ℎ
)        where  (

𝜕𝑧

𝜕𝑎ℎ
) = 𝑤      Eqn 3a 

 

When Equation 3a is applied to the hidden neurons in Figure 2, the following equations are obtained: 

(
𝜕𝐶

𝜕𝑎1
) = (

𝜕𝐶

𝜕𝑎5
) (

𝜕𝑎5

𝜕𝑧5
) (

𝜕𝑧5

𝜕𝑎1
) where (

𝜕𝑎5

𝜕𝑧5
) = 𝜎′(𝑧5) =

𝑒𝑧5

(1+𝑒𝑧5)2
 & (

𝜕𝑧5

𝜕𝑎1
) = 𝑤9  Eqn 3b 

(
𝜕𝐶

𝜕𝑎2
) = (

𝜕𝐶

𝜕𝑎5
) (

𝜕𝑎5

𝜕𝑧5
) (

𝜕𝑧5

𝜕𝑎2
) where (

𝜕𝑧5

𝜕𝑎2
) = 𝑤10      Eqn 3c 

(
𝜕𝐶

𝜕𝑎3
) = (

𝜕𝐶

𝜕𝑎5
) (

𝜕𝑎5

𝜕𝑧5
) (

𝜕𝑧5

𝜕𝑎3
) where (

𝜕𝑧5

𝜕𝑎3
) = 𝑤11      Eqn 3d 

(
𝜕𝐶

𝜕𝑎4
) = (

𝜕𝐶

𝜕𝑎5
) (

𝜕𝑎5

𝜕𝑧5
) (

𝜕𝑧5

𝜕𝑎4
) where (

𝜕𝑧5

𝜕𝑎4
) = 𝑤12      Eqn 3e 

 

 

3. The cost function on inputs 1 and 2 

By adopting the single-layer neural network (SNN), the hidden neurons can be trained to depend on inputs 1 

and 2. In other words, input neurons and hidden layers are assumed to have a linear relationship. Hence, the 

mathematical relationship for these cost functions can be obtained from Equation 4 below at this stage of the 

mathematical formulation. 



𝜕𝐶

𝜕𝑤
= (

𝜕𝐶

𝜕𝑎
) (

𝜕𝑎

𝜕𝑧
) (

𝜕𝑧

𝜕𝑤
);    

𝜕𝐶

𝜕𝑏
= (

𝜕𝐶

𝜕𝑎
) (

𝜕𝑎

𝜕𝑧
) (

𝜕𝑧

𝜕𝑏
)      Eqn 4 

 

 

Inputs connected to hidden neuron 1     

(
𝜕𝐶

𝜕𝑏1

) = (
𝜕𝐶

𝜕𝑎1

) (
𝜕𝑎1

𝜕𝑧1

) (
𝜕𝑧1

𝜕𝑏1

)  where (
𝜕𝑧1

𝜕𝑏1
) = 1  & (

𝜕𝑎1

𝜕𝑧1
) = 𝜎′(𝑧1) =

𝑒𝑧1

(1+𝑒𝑧1)2
  Eqn 5a 

(
𝜕𝐶

𝜕𝑤1

) = (
𝜕𝐶

𝜕𝑎1

) (
𝜕𝑎1

𝜕𝑧1

) (
𝜕𝑧1

𝜕𝑤1

)  where (
𝜕𝑧1

𝜕𝑤1
) = 𝑥1      Eqn 5b 

(
𝜕𝐶

𝜕𝑤2

) = (
𝜕𝐶

𝜕𝑎1

) (
𝜕𝑎1

𝜕𝑧1

) (
𝜕𝑧1

𝜕𝑤2

)  where (
𝜕𝑧1

𝜕𝑤2
) = 𝑥2      Eqn 5c 

Hence: ∆𝑏1 = −𝑘𝑃 (∑ (
𝜕𝐶

𝜕𝑏1
) 𝑁

𝑖=1 ) /𝑁   &  𝑏1(𝑁𝑒𝑤) = 𝑏1(𝑂𝑙𝑑) + ∆𝑏1   Eqn 5d 

∆𝑤1 = −𝑘𝑃 (∑ (
𝜕𝐶

𝜕𝑤1
) 𝑁

𝑖=1 ) /𝑁   & 𝑤1(𝑁𝑒𝑤) = 𝑤1(𝑂𝑙𝑑) + ∆𝑤1   Eqn 5e 

∆𝑤2 = −𝑘𝑃 (∑ (
𝜕𝐶

𝜕𝑤2
) 𝑁

𝑖=1 ) /𝑁   & 𝑤2(𝑁𝑒𝑤) = 𝑤2(𝑂𝑙𝑑) + ∆𝑤2   Eqn 5f 

 

Inputs connected to hidden neuron 2 

(
𝜕𝐶

𝜕𝑏2

) = (
𝜕𝐶

𝜕𝑎2

) (
𝜕𝑎2

𝜕𝑧2

) (
𝜕𝑧2

𝜕𝑏2

)  where (
𝜕𝑧2

𝜕𝑏2
) = 1 & (

𝜕𝑎2

𝜕𝑧2
) = 𝜎′(𝑧2) =

𝑒𝑧2

(1+𝑒𝑧2)2
  Eqn 6a 

(
𝜕𝐶

𝜕𝑤3

) = (
𝜕𝐶

𝜕𝑎2

) (
𝜕𝑎2

𝜕𝑧2

) (
𝜕𝑧2

𝜕𝑤3

)  where (
𝜕𝑧2

𝜕𝑤3
) = 𝑥1        Eqn 6b 

(
𝜕𝐶

𝜕𝑤4

) = (
𝜕𝐶

𝜕𝑎2

) (
𝜕𝑎2

𝜕𝑧2

) (
𝜕𝑧2

𝜕𝑤4

)  where (
𝜕𝑧2

𝜕𝑤4
) = 𝑥2        Eqn 6c 

Hence: ∆𝑏2 = −𝑘𝑃 (∑ (
𝜕𝐶

𝜕𝑏2
) 𝑁

𝑖=1 ) /𝑁   &  𝑏2(𝑁𝑒𝑤) = 𝑏2(𝑂𝑙𝑑) + ∆𝑏2   Eqn 6d 

∆𝑤3 = −𝑘𝑃 (∑ (
𝜕𝐶

𝜕𝑤3
) 𝑁

𝑖=1 ) /𝑁   & 𝑤3(𝑁𝑒𝑤) = 𝑤3(𝑂𝑙𝑑) + ∆𝑤3   Eqn 6e 

∆𝑤4 = −𝑘𝑃 (∑ (
𝜕𝐶

𝜕𝑤4
) 𝑁

𝑖=1 ) /𝑁   & 𝑤4(𝑁𝑒𝑤) = 𝑤4(𝑂𝑙𝑑) + ∆𝑤4   Eqn 6f 

 

Inputs connected to hidden neuron 3 

(
𝜕𝐶

𝜕𝑏3

) = (
𝜕𝐶

𝜕𝑎3

) (
𝜕𝑎3

𝜕𝑧3

) (
𝜕𝑧3

𝜕𝑏3

)  where (
𝜕𝑧3

𝜕𝑏3
) = 1 & (

𝜕𝑎3

𝜕𝑧3
) = 𝜎′(𝑧3) =

𝑒𝑧3

(1+𝑒𝑧3)2
  Eqn 7a 

(
𝜕𝐶

𝜕𝑤5

) = (
𝜕𝐶

𝜕𝑎3

) (
𝜕𝑎3

𝜕𝑧3

) (
𝜕𝑧3

𝜕𝑤5

)  where (
𝜕𝑧3

𝜕𝑤5
) = 𝑥1        Eqn 7b 

(
𝜕𝐶

𝜕𝑤6

) = (
𝜕𝐶

𝜕𝑎3

) (
𝜕𝑎3

𝜕𝑧3

) (
𝜕𝑧3

𝜕𝑤6

)  where (
𝜕𝑧3

𝜕𝑤6
) = 𝑥2        Eqn 7c 



Hence: ∆𝑏3 = −𝑘𝑃 (∑ (
𝜕𝐶

𝜕𝑏3
) 𝑁

𝑖=1 ) /𝑁   &  𝑏3(𝑁𝑒𝑤) = 𝑏3(𝑜𝑙𝑑) + ∆𝑏3   Eqn 7d 

∆𝑤5 = −𝑘𝑃 (∑ (
𝜕𝐶

𝜕𝑤5
) 𝑁

𝑖=1 ) /𝑁   & 𝑤5(𝑁𝑒𝑤) = 𝑤5(𝑁𝑒𝑤) + ∆𝑤5   Eqn 7e 

∆𝑤6 = −𝑘𝑃 (∑ (
𝜕𝐶

𝜕𝑤6
) 𝑁

𝑖=1 ) /𝑁   & 𝑤6(𝑁𝑒𝑤) = 𝑤6(𝑁𝑒𝑤) + ∆𝑤6   Eqn 7f 

 

Inputs connected to hidden neuron 4 

(
𝜕𝐶

𝜕𝑏4

) = (
𝜕𝐶

𝜕𝑎4

) (
𝜕𝑎4

𝜕𝑧4

) (
𝜕𝑧4

𝜕𝑏4

)  where (
𝜕𝑧4

𝜕𝑏4
) = 1 & (

𝜕𝑎4

𝜕𝑧4
) = 𝜎′(𝑧4) =

𝑒𝑧4

(1+𝑒𝑧4)2
  Eqn 8a 

(
𝜕𝐶

𝜕𝑤7

) = (
𝜕𝐶

𝜕𝑎4

) (
𝜕𝑎4

𝜕𝑧4

) (
𝜕𝑧4

𝜕𝑤7

)  where 
𝜕𝑧4

𝜕𝑤7
= 𝑥1        Eqn 8b 

(
𝜕𝐶

𝜕𝑤8

) = (
𝜕𝐶

𝜕𝑎4

) (
𝜕𝑎4

𝜕𝑧4

) (
𝜕𝑧4

𝜕𝑤8

)  where (
𝜕𝑧4

𝜕𝑤8
) = 𝑥2        Eqn 8c 

Hence: ∆𝑏4 = −𝑘𝑃 (∑ (
𝜕𝐶

𝜕𝑏4
) 𝑁

𝑖=1 ) /𝑁   &  𝑏4(𝑁𝑒𝑤) = 𝑏4(𝑂𝑙𝑑) + ∆𝑏4   Eqn 8d 

∆𝑤7 = −𝑘𝑃 (∑ (
𝜕𝐶

𝜕𝑤7
) 𝑁

𝑖=1 ) /𝑁   & 𝑤7(𝑁𝑒𝑤) = 𝑤7(𝑂𝑙𝑑) + ∆𝑤7   Eqn 8e 

∆𝑤8 = −𝑘𝑃 (∑ (
𝜕𝐶

𝜕𝑤8
) 𝑁

𝑖=1 ) /𝑁   & 𝑤8(𝑁𝑒𝑤) = 𝑤8(𝑂𝑙𝑑) + ∆𝑤8   Eqn 8d 

In this way, Equations 2–8 are trained to minimize the cost function between the real and predicted output 

signals to almost zero and to obtain optimum values for arbitrary constants. 


