
 

 

 

Details of data gathering and storage 

The workflow to capture and stope polymers into a machine readable format is 

described below: 

1. Identifying the polymer identification (PID) field in PolyInfo and using that as a 

label. 

2. Translating the structural repeating unit image into a string following the 

simplified molecular-input line-entry system (SMILES) convention [1], using * to 

indicate connection points, as shown in Figure S1, for use in subsequent 

molecular operations, such as fingerprinting. The full list of PIDs and SMILES 

strings is attached as a separate supplementary CSV file. 

3. Finding data tables for each property of interest and recording for each data 

point: 

a. Sample ID 

b. Material Type 

c. Additives 

d. Property [units] 

e. Method 

f. Condition 

4. Processing polymer properties prior to use in predictive models. The raw data 

from PoLyInfo yields distributions of measured property data for each polymer. 

First, we filter the data by selecting only samples labeled as “Neat resin” in the 

Material Type column. For polymers that only had one measured value left, that 

was used as the representative value. For those that had a distribution of 

measurements left, these distributions were consolidated into single 

representative values; here, the mean values of the distributions are used. We 



 

 

 

excluded data which has standard deviation in reported values larger than 30°C 

for Tg and Tm. The final dataset sizes after consolidation are shown in Figure S2. 

Figure S1. Example of translating an image of a structural repeating unit into its 

corresponding SMILES string.

 

Figure S2. Data distribution of thermal and mechanical properties of polyamides in 

PoLyInfo. 

  



 

 

 

Effect of fingerprint uniqueness 

A comparison of metrics for models using ECFPs as inputs is shown in Table S1. Here, 

average refers to taking the average property value for each unique ECFP rather than the 

conventional way, where there could be different values corresponding to the same ECFP. 

Due to the variability in the distribution of a property for a given ECFP (e.g. in Figure S3), 

it is expected that averaging would cause some error. 

Table S1. 5-fold test metrics before and after averaging values for RF models. 

 ECFP2 ECFP2 avg ECFP10 ECFP10 avg 

Proper

ty 

R2 RMS

E 

R2 RMS

E 

R2 RMS

E 

R2 RMS

E 

𝜌  0.69 0.08 0.56 0.08 0.67 0.08 0.69 0.08 

𝐸   0.30 1.03 0.18 1.21 0.15 1.17 0.20 1.16 

𝑇𝑔  0.88 34.4 0.83 38.7 0.84 39.5 0.83 40.2 

𝑇𝑚  0.66 50.6 0.55 63.5 0.63 52.5 0.66 50.8 

 

 

Figure S3. Example of density value distributions for a set of unique ECFP2 that have 

multiple values. 



 

 

 

Effect of feature selection  

To figure out which indices of the ECFP2 and ECFP10 fingerprints were most important 

for inference, five RF models were trained for each property and fingerprint 

combination (e.g., density and ECFP2) and the feature_importances_ attribute from 

scikit-learn was extracted [2]. For each model, the 50 most important indices were 

compiled into a list. Once these indices were identified, the intersection and union sets 

were determined from the five lists for each combination. Figures S4-S7 show the effect 

of choosing the intersection versus choosing the union for different 

algorithm/fingerprint combinations. The final test metrics are listed in Table S2 and 

Table S3 for LR and SVM respectively to compare model accuracy before and after 

feature selection. Figure S8 shows the RMSE comparisons in Table S2 and Table S3 

graphically. Figure S9 shows the RMSE comparisons between models using feature 

selection versus just using RF directly. 
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Figure S4. 5-fold linear regression result comparison between intersection (left) and 

union (right) sets using ECFP2 fingerprints for (a) density. (b) tensile modulus. (c) glass 

transition temperature. (d) melting temperature. 
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Figure S5. 5-fold linear regression result comparison between intersection (left) and 

union (right) sets using ECFP10 fingerprints for (a) density. (b) tensile modulus. (c) 

glass transition temperature. (d) melting temperature. 
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Figure S6. 5-fold SVM result comparison between intersection (left) and union (right) 

sets using ECFP2 fingerprints for (a) density. (b) tensile modulus. (c) glass transition 

temperature. (d) melting temperature. 
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Figure S7. 5-fold SVM result comparison between intersection (left) and union (right) 

sets using ECFP10 fingerprints for (a) density. (b) tensile modulus. (c) glass transition 

temperature. (d) melting temperature. 

Table S2. 5-fold validation test set metrics for linear regression models before and after 

using feature selection (FS) based on the intersection (Int) and union (Uni) feature sets. 

 ECFP2 

no FS 

ECFP2 

FS Int 

ECFP2 

FS Uni 

ECFP10 

no FS 

ECFP10 

FS Int 

ECFP10 

FS Uni 

Property R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

𝜌  n/a n/a 0.63 0.08 n/a n/a n/a n/a 0.50 0.09 0.58 0.09 

𝐸   n/a n/a 0.33 1.02 n/a n/a n/a n/a 0.09 1.12 n/a n/a 

𝑇𝑔  n/a n/a 0.73 51.2 n/a n/a n/a n/a 0.70 53.4 0.79 44.7 

𝑇𝑚  n/a n/a 0.56 57.8 n/a n/a n/a n/a 0.45 64.5 0.57 56.8 

 

Table S3. 5-fold validation test set metrics for SVM models before and after using 

feature selection (FS) based on the intersection (Int) and union (Uni) feature sets. 

 ECFP2 

no FS 

ECFP2 

FS Int 

ECFP2 

FS Uni 

ECFP10 

no FS 

ECFP10 

FS Int 

ECFP10 

FS Uni 

Property R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

𝜌  0.21 0.12 0.35 0.11 0.27 0.11 n/a 0.14 0.23 0.12 0.10 0.13 

𝐸   0.35 1.01 0.28 1.06 0.38 0.99 0.27 1.08 0.15 1.16 0.28 1.06 

𝑇𝑔  0.77 47.6 0.79 45.4 0.85 37.6 0.73 50.8 0.75 59.1 0.81 42.4 

𝑇𝑚  0.44 65.4 0.54 59.1 0.55 58.0 0.30 73.1 0.47 62.6 0.50 61.4 

 

 

 

 



 

 

 

 



 

 

 

Figure S8. Comparison of 5-fold test RMSE for linear regression (LR) and SVM (SV) 

models with no feature selection versus models with feature selection using the 

intersection (I) and union (U) sets for different fingerprint/property combinations. (a) 

ECFP2/𝜌. (b) ECFP10/𝜌. (c) ECFP2/𝐸. (d) ECFP10/𝐸. (e) ECFP2/𝑇𝑔. (f) ECFP10/𝑇𝑔. (g) 

ECFP2/𝑇𝑚. (h) ECFP10/𝑇𝑚. 

  



 

 

 
 



 

 

 

Figure S9. Comparison of 5-fold test RMSE for random forest (RF) models versus for 

linear regression (LR) and SVM (SV) models with feature selection using the 

intersection (I) and union (U) sets for different fingerprint/property combinations. (a) 

ECFP2/𝜌. (b) ECFP10/𝜌. (c) ECFP2/𝐸. (d) ECFP10/𝐸. (e) ECFP2/𝑇𝑔. (f) ECFP10/𝑇𝑔. (g) 

ECFP2/𝑇𝑚. (h) ECFP10/𝑇𝑚. 

 

QSPR feature sets 

The QSPR descriptors used in this work were: 

1. Number of heavy atoms 

2. Number of hydrogen bonding groups (amide, urea, urethane, hydroxyl, 

carboxylic acid, sulfonic acid) 

3. Number of rotational degrees of freedom (defined in Bicerano) [3] 

4. Number of fused rings (excluding spiro and bridged rings; defined in Bicerano) 

[3] 

5. Number of aromatic rings 

6. Number of rotatable bonds 

7. Number of imide groups 

8. Number of amide groups 

9. Number of urea groups 

10.  Number of urethane groups 

11. Number of ketone groups 

12. Number of methyl groups attached to aromatic atoms in the backbone 

These descriptors were calculated using RDKit [4], whether directly as a counter (e.g. 

for aromatic rings) or as an enabler for a self-coded counter (e.g. for Bicerano’s 

definition of rotational degrees of freedom). 



 

 

 

Table S4 summarizes the results for all representation, model, and property 

combinations studied in this work. 

Table S4. Summary of the best 𝑅2 and 𝑅𝑀𝑆𝐸 metrics for all 

representation/model/property combinations studied in this work. 

 𝑻𝒈 (°C) 𝑻𝒎 (°C) 𝝆 (g/cc) 𝑬 (GPa) 

Representation Model R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

ECFP2 Linear 

with FS 

0.73 51.2 0.56 57.8 0.63 0.08 0.33 1.02 

SVM 

with FS 

0.85 37.6 0.55 58.0 0.35 0.11 0.38 0.99 

RF 0.88 34.4 0.66 50.6 0.69 0.08 0.30 1.03 

LASSO 

Linear 

0.87 35.5 0.66 50.4 n/a 0.14 n/a 1.21 

Ridge 

Linear 

0.88 33.5 0.70 48.0 0.72 0.07 0.38 0.98 

ECFP10 Linear 

with FS 

0.79 44.7 0.57 56.8 0.58 0.09 0.09 1.12 

SVM 

with FS 

0.81 42.4 0.50 61.4 0.23 0.12 0.28 1.06 

RF 0.84 39.5 0.63 52.5 0.67 0.08 0.15 1.17 

LASSO 

Linear 

0.85 37.6 0.65 51.0 n/a 0.14 n/a 1.24 



 

 

 

Ridge 

Linear 

0.84 39.3 0.68 49.0 0.77 0.07 0.28 1.04 

QSPR 

unnormalized 

Linear 0.71 53.3 0.37 68.9 0.59 0.09 0.16 1.12 

SVM 0.80 44.2 0.42 66.0 0.47 0.10 0.22 1.10 

RF 0.81 42.5 0.38 68.8 0.65 0.08 n/a 1.20 

QSPR 

normalized 

Linear 0.74 49.9 0.41 66.8 0.69 0.08 0.18 1.14 

SVM 0.79 44.4 0.45 64.4 0.44 0.10 0.21 1.11 

RF 0.83 41.0 0.42 65.9 0.66 0.08 n/a 1.28 

QSPR 

unnormalized 

with CI 

Linear 0.71 52.5 0.39 68.2 0.63 0.08 0.23 1.12 

SVM 0.80 44.1 0.41 66.6 0.44 0.10 0.18 1.11 

RF 0.83 40.0 0.42 66.4 0.67 0.08 0.19 1.15 

QSPR 

normalized 

with CI 

Linear 0.75 48.6 0.40 67.2 0.72 0.07 0.22 1.11 

SVM 0.80 43.9 0.44 65.1 0.48 0.10 0.09 1.21 

RF 0.82 41.3 0.38 68.2 0.72 0.07 n/a 1.28 
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