Supplementary Information

How small molecules affect the thermo-oxidative aging mechanism of polypropylene: A reactive molecular dynamics study

Fan Zhang 1, Yufei Cao 1, Xuan Liu 1, Huan Xu 1, Diannan Lu 1,* and Rui Yang 1,*

¹ Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

Figure S1. (a) Consumption ways of O₂ at PP aging system; Distribution of oxygen-containing fragments at: (b)PP-10O₂-2C₂H₄O₂-3000 K (c)PP-10O₂-2C₂H₄O₂-3000 K

Figure S2. Evolution of the change of carbonyl number with time when the number of acetic acid / acetone added to the model was (a)2; (b)5; (c)10; (d)20.

Figure S3. Other reaction paths for acetic acid

Figure S4. Gibbs free energy change for typical acetic acid reactions

Figure S5. Gibbs free energy change for typical acetone reactions

Table S1. P	roportion c	of the final	products
-------------	-------------	--------------	----------

T/K	C1	C2	C3	C4	C5	C6	C7	C8	С9	C10+	Not C	Total
2000	17.9%	6.9%	46.1%	5.9%	4.9%	4.9%	2.0%	1.0%	0	5.9%	4.9%	102
2500	28.8%	26.1%	17.0%	5.9%	3.3%	3.3%	1.3%	0	0	2.6%	11.8%	153
3000	30.2%	29.0%	8.3%	5.3%	2.4%	0.6%	0.6%	0.6%	0.6%	3.0%	19.5%	169

Product	Generation ways	The proportion of generation way	Reactions
	CO breaks away from C-H-O fragments $^{1}(C \ge 2)$	60.5%	$C_4H_3O \rightarrow CO + C_3H_3 $
CO	H atom breaks away from CHO-	26.3%	$CHO \rightarrow CO + H \cdot$
CO	C-H-O fragments(C=1) break down into CO and H_mO	13.2%	$\mathrm{CHO}\cdot +\mathrm{H_2O}\rightarrow\mathrm{CO}+\mathrm{H_3O}\cdot$
	H2O breaks away from C-H-O fragments	74.4%	$C_3H_70 \rightarrow H_20 + C_3H_5 $
H ₂ O	H atom breaks away from H ₂ O ₂	9.3%	$\mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{C}_{2}\mathrm{H}_{2} \rightarrow \mathrm{H}_{2}\mathrm{O} + \mathrm{C}_{2}\mathrm{H}_{2}\mathrm{O}$
	Other H _m O _n fragments decompose	16.3%	$\mathrm{H}_2\mathrm{O}_3 \to \mathrm{H}_2\mathrm{O} + \mathrm{O}_2$

Table S2. The formation method of CO and H₂O in the system with $100 O_2$

¹ C-H-O fragments: Fragments containing the elements carbon, hydrogen, and oxygen

Table S3. Calculation results of △G at different temperatures for the generation reactions of H2, CH4 and C2H4

Reaction	∆G (kJ/mol)					
	298.15 K	383.15 K	1600 K	2000 K	2400 K	3000 K
$C_4H_9 \rightarrow H_2 + C_4H_7 $	166.76	141.30	2.15	-42.82	-86.99	-151.86
$C_4H_9 \rightarrow CH_4 + C_3H_5 $	90.36	80.03	-89.60	-130.38	-168.66	-194.15
$\mathrm{C_4H_9} \hookrightarrow \mathrm{C_2H_4} + \mathrm{C_2H_5} \cdot$	53.31	39.29	-152.59	-212.01	-270.13	-355.31

Table S4. Calculation results of ΔG at different temperatures for the typical reactions of acetic acid

Reaction		∆G (kJ/mol)	
	298.15 K	383.15 K	3000 K
$CH_3COOH + O_2 \rightarrow CH_3COO \cdot + HO_2 \cdot$	268.18	265.44	183.48
$CH_3COOH + CHO_2 \rightarrow CH_3COO + CH_2O_2$	-14.66	-15.12	-27.90
$CH_3COOH + CH_3O_2 \rightarrow CH_3COO + CH_4O_2$	124.41	124.44	147.77
$CH_3COO \rightarrow CO_2 + CH_3 $	-101.61	-111.26	-391.73

Table S5. Calculation results of △G at different temperatures for the typical reactions of acetone

Reaction		∆G (kJ/mol)	
	298.15 K	383.15 K	3000 K
$CH_3COCH_3 \rightarrow CH_3CO \cdot + CH_3 \cdot$	311.21	297.77	-99.44
$CH_3CO \rightarrow CH_2CO + H \cdot$	143.08	134.99	148.47
$CH_3CO \rightarrow CO + CH_3 $	10.11	-0.53	-318.83
$CH_3COCH_3 \rightarrow CH_3COCH_2 \cdot +H \cdot$	366.30	356.69	20.55
$CH_3COCH_2 \rightarrow CH_2CO + CH_3 \cdot$	87.99	76.06	268.45