Supplementary Information

How small molecules affect the thermo-oxidative aging mechanism of polypropylene: A reactive molecular dynamics study

Fan Zhang ${ }^{1}$, Yufei Cao ${ }^{1}$, Xuan Liu ${ }^{1}$, Huan Xu ${ }^{1}$, Diannan Lu ${ }^{\text {1,* }}$ and Rui Yang ${ }^{1, *}$

1 Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

Figure S1. (a) Consumption ways of O_{2} at PP aging system; Distribution of oxygen-containing fragments at: (b)PP-10O2$2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}-3000 \mathrm{~K}(\mathrm{c}) \mathrm{PP}-100 \mathrm{O}_{2}-2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}-3000 \mathrm{~K}$

Figure S2. Evolution of the change of carbonyl number with time when the number of acetic acid / acetone added to the model was (a)2; (b)5; (c)10; (d)20.

pathway A

pathway B

Figure S3. Other reaction paths for acetic acid

Figure S4. Gibbs free energy change for typical acetic acid reactions

Figure S5. Gibbs free energy change for typical acetone reactions

Table S1. Proportion of the final products

T/K	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10+	Not C	Total
2000	17.9%	6.9%	46.1%	5.9%	4.9%	4.9%	2.0%	1.0%	0	5.9%	4.9%	102
2500	28.8%	26.1%	17.0%	5.9%	3.3%	3.3%	1.3%	0	0	2.6%	11.8%	153
3000	30.2%	29.0%	8.3%	5.3%	2.4%	0.6%	0.6%	0.6%	0.6%	3.0%	19.5%	169

Table S2. The formation method of CO and $\mathrm{H}_{2} \mathrm{O}$ in the system with $100 \mathrm{O}_{2}$

Product	Generation ways	The proportion of generation way	Reactions
CO	CO breaks away from C-H-O fragments ${ }^{1}(\mathrm{C} \geq 2)$	60.5\%	$\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O} \rightarrow \mathrm{CO}+\mathrm{C}_{3} \mathrm{H}_{3}$.
	H atom breaks away from CHO .	26.3\%	$\mathrm{CHO} \rightarrow \mathrm{CO}+\mathrm{H}$ -
	C-H-O fragments($\mathrm{C}=1$) break down into CO and Hm_{m}	13.2\%	$\mathrm{CHO} \cdot+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+\mathrm{H}_{3} \mathrm{O}$.
$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}$ breaks away from C-H-O fragments	74.4\%	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{C}_{3} \mathrm{H}_{5}$.
	H atom breaks away from $\mathrm{H}_{2} \mathrm{O}_{2}$	9.3\%	$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{C}_{2} \mathrm{H}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$
	Other $\mathrm{Hm}_{\mathrm{m}} \mathrm{O}_{\mathrm{n}}$ fragments decompose	16.3\%	$\mathrm{H}_{2} \mathrm{O}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

${ }^{1} \mathrm{C}$-H-O fragments: Fragments containing the elements carbon, hydrogen, and oxygen

Table S3. Calculation results of $\Delta \mathrm{G}$ at different temperatures for the generation reactions of $\mathrm{H}_{2}, \mathrm{CH}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$

Reaction	$\Delta \mathbf{G}(\mathbf{k J} / \mathbf{m o l})$					
	298.15 K	383.15 K	1600 K	2000 K	2400 K	3000 K
$\mathrm{C}_{4} \mathrm{H}_{9} \cdot \rightarrow \mathrm{H}_{2}+\mathrm{C}_{4} \mathrm{H}_{7} \cdot$	166.76	141.30	2.15	-42.82	-86.99	-151.86
$\mathrm{C}_{4} \mathrm{H}_{9} \rightarrow \mathrm{CH}_{4}+\mathrm{C}_{3} \mathrm{H}_{5}$.	90.36	80.03	-89.60	-130.38	-168.66	-194.15
$\mathrm{C}_{4} \mathrm{H}_{9} \cdot \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{5}$.	53.31	39.29	-152.59	-212.01	-270.13	-355.31

Table S4. Calculation results of $\Delta \mathrm{G}$ at different temperatures for the typical reactions of acetic acid

Reaction	$\Delta \mathbf{G}(\mathbf{k J} / \mathbf{m o l})$		
	298.15 K	383.15 K	3000 K
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{COO} \cdot+\mathrm{HO}_{2} \cdot$	268.18	265.44	183.48
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CHO}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{COO} \cdot+\mathrm{CH}_{2} \mathrm{O}_{2}$	-14.66	-15.12	-27.90
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{COO} \cdot+\mathrm{CH}_{4} \mathrm{O}_{2}$	124.41	124.44	147.77
$\mathrm{CH}_{3} \mathrm{COO} \rightarrow \mathrm{CO}_{2}+\mathrm{CH}_{3}$.	-101.61	-111.26	-391.73

Table S5. Calculation results of $\Delta \mathrm{G}$ at different temperatures for the typical reactions of acetone

Reaction	$\Delta \mathrm{G}(\mathbf{k J} / \mathbf{m o l})$		
	298.15 K	383.15 K	3000 K
$\mathrm{CH}_{3} \mathrm{COCH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CO} \cdot+\mathrm{CH}_{3} \cdot$	311.21	297.77	-99.44
$\mathrm{CH}_{3} \mathrm{CO} \rightarrow \mathrm{CH}_{2} \mathrm{CO}+\mathrm{H} \cdot$	143.08	134.99	148.47
$\mathrm{CH}_{3} \mathrm{CO} \rightarrow \mathrm{CO}+\mathrm{CH}_{3} \cdot$	10.11	-0.53	-318.83
$\mathrm{CH}_{3} \mathrm{COCH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{COCH}_{2} \cdot+\mathrm{H} \cdot$	366.30	356.69	20.55
$\mathrm{CH}_{3} \mathrm{COCH}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{CO}+\mathrm{CH}_{3}$.	87.99	76.06	268.45

