
Supplementary Materials:

Table S1: Number of seeds counted manually and using the algorithm.

Manual count Algorithm count Source of error

25 25 None

50 50 None

100 99 Overlapped seeds

150 150 None

250 250 None

300 299 Overlapped seeds

350 351 Noise counted as seed

400 400 None

450 451 Noise counted as seed

500 500 None

Table S2: List of cultivars used for seed image acquisition.

1. Singangkong 6. Uramkong 11. Zee 16. Zhonghuang 13

2. Daechankong 7. Taekwangkong 12.Sohwangkong 17. Rhosa

3. Jamolkong 8. Sinhwakong 13.Danmikong 18. Liao dou 13

4. Soyeonkong 9. Seunphungkong 14. Lang xiaoli douz 19. CS01093

5. Danmikong 2 10. Misokong 15. Jiyu 50 20. Jiyu 65

Figure S1. Errors that may arise due to overlapping seeds (a) and background noise (b).

Python Source Code.

a) Source code for seed size measurement single seed

import cv2 #import cv2 library

img = cv2.imread('D:/seed.jpg') #set the directory of the image

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #convert image to grayscale

ret, thresh = cv2.threshold(gray, 140, 255, cv2.THRESH_BINARY) #thresholding of the image,

cv2.THRESH_BINARY_INV can be used if other image is taken in white background with different

color seeds

contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) #find

contours in thresholded image

max_area = 0

max_contour = None

for contour in contours: #selection of maximum contour length and width

 x, y, w, h = cv2.boundingRect(contour)

 area = w * h

 if area > max_area:

 max_area = area

 max_contour = contour

if max_contour is not None:

 x, y, w, h = cv2.boundingRect(max_contour)

 print('The width is:', w/69.1) #calculate width. The value 69.1 is from calibration.

 print('The height is:', h/69.1) # calculate length. The value 69.1 is from calibration.

 cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2) #displayed contoured image with resizing

down_width = 1000

down_height = 1000

down_points = (down_width, down_height)

resized_down = cv2.resize(img, down_points, interpolation= cv2.INTER_LINEAR)

cv2.imshow('Resized Down by defining height and width', resized_down)

cv2.waitKey(0)

b) Seed size measurement for more than one seeds

import cv2 #import cv2 library

img = cv2.imread('D:/seed.jpg') #set image directory

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #convert image to grayscale

ret, thresh = cv2.threshold(gray, 170, 255, cv2.THRESH_BINARY) #use global threshold to thresh the

image, cv2.THRESH_BINARY_INV can be used if other image is taken in white background with

different color seeds

contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE) #find the contours

max_areas = []

max_contours = []

for contour in contours: #find number of contours

 x, y, w, h = cv2.boundingRect(contour)

 area = w * h

 if len(max_areas) < 5: #set the number of seeds, here 5 seeds are used

 max_areas.append(area)

 max_contours.append(contour)

 else:

 min_area = min(range(len(max_areas)), key=max_areas.__getitem__) #get largest 5 contours

 if area > max_areas[min_area]:

 max_areas[min_area] = area

 max_contours[min_area] = contour

for contour in max_contours: #prints length and width of seeds serially

 x, y, w, h = cv2.boundingRect(contour)

 print("Width:", w)

 print("Height:", h)

 cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)

down_width = 1000

down_height = 1000

down_points = (down_width, down_height) #downsize the image and prints along with contour

boundary

resized_down = cv2.resize(img, down_points, interpolation= cv2.INTER_LINEAR)

cv2.imshow('Contoured Image', resized_down)

cv2.waitKey(0)

cv2.waitKey(0)

c) Source code for seed number counting

import cv2 #import cv2

image = cv2.imread("D:/seed.jpg") #set image directory

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #convert RGB to grayscale

blurred = cv2.GaussianBlur(gray, (5, 5), 0) #use Gaussian blurr

ret, thresh = cv2.threshold(blurred, 170, 255, cv2.THRESH_BINARY) #global thresholding of image using 170,255

value

kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))

dilate = cv2.dilate(thresh, kernel, iterations=1) #dialtion

contours, _ = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) #find the contours

of dilated image

img = image.copy()

cv2.drawContours(img, contours, -1, (0, 0, 255), 2) #draw the contours

number_seeds = len(contours) #calculate contour number

print ('The number of seeds present in the image is:' , number_seeds) #prints number of seeds

down_width = 1000

down_height = 1000

down_points = (down_width, down_height)

resized_down = cv2.resize(img, down_points, interpolation= cv2.INTER_LINEAR)

cv2.imshow('Contoured image', resized_down) #displays contoured image

cv2.waitKey(0)

cv2.waitKey(0)

d) Source code for seed projected area (PA)

import cv2 #import library

img = cv2.imread('D:/seed.jpg') #set image directory

gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

ret, thresh = cv2.threshold(gray,170,255,cv2.THRESH_BINARY) #thresholding of the image

area = cv2.countNonZero(thresh) # counting the total number of pixels of the thresholded image

down_width = 1000

down_height = 1000

down_points = (down_width, down_height)

resized_down = cv2.resize(thresh, down_points, interpolation= cv2.INTER_LINEAR)

cv2.imshow('Thresholded image', resized_down) # display the thresholded image

cv2.waitKey(0)

cv2.waitKey(0)

total = area/(281*281) # dividing the total pixels by number of pixels per cm2. Here 281 is obtained from

calibration.

average = (total*100)/5 # taking average of the 5 seeds for average projected area

print('Average area of seeds is:', average) # prints the average projected area of the seed

e) Source code for calibration

import cv2 #import the library

import math

points = []

def mouse_callback(event, x, y, flags, param): #use of mouseCallback function

 global points

 if event == cv2.EVENT_LBUTTONDOWN: #click left button of mouse indicating the known points

 points.append((x, y))

 if len(points) == 2:

 print("Point 1 coordinates: ", points[0]) #displays first point coordinates

 print("Point 2 coordinates: ", points[1]) #displays second point coordinates

 dist = math.sqrt((points[1][0] - points[0][0]) ** 2 + (points[1][1] - points[0][1]) ** 2) #calculates the distance

between the two points

 print("Number of pixels in between two points is: ", dist) #prints the number of pixels in that known points

img = cv2.imread("D:/scale.JPG") #set the directory of the image

cv2.namedWindow("image")

cv2.setMouseCallback("image", mouse_callback)

cv2.imshow("image", img)

cv2.waitKey(0)

cv2.destroyAllWindows()

*Note- The sentence written after (#) sign in bold letters describes the function of the particular line of code.

Additional information on different metrics or values used in the line of code:

As for the seed trait measurement, the highest contour that represented only seeds was extracted so

that a bit less threshold (140,255) value would also be able to segment the seeds from the background.

The high threshold for area evaluation and seed counting was set to avoid any background noise,

which can add the background noise as seed area and can be interpreted as seeds while counting total

number of seeds, hence causing errors. If the contour boundary does not cover the seeds these

threshold value can be changed according to the requirement. Similarly, the inverted binary

thresholded can be done for different color seeds for the images taken in white background.

 Likewise, the kernel size (K-size) value in Gaussian blur is a positive odd integer. The value (5,5), is

commonly used for reasonable blurring for omitting the noise. The value (3,3) would provide less

blurring effect, and a higher value of (9,9) or (11,11) would be stronger

The value of down size of image was chosen 1000*1000, which will facilitate the clear viewing of the

picture during the analysis process. As the picture size was quite large (6000*4000), which does not

get plotted in the python environment hence it was downsized to 1000*1000. User can set their own

down size value.

