## Supplementary Materials:



Accesion names

Supplementary Figure 1. Al tolerance of 65 indica rice varieties. Four-day-old seedlings were exposed to a $0.5 \mathrm{mM} \mathrm{CaCl}_{2}(\mathrm{pH} 4.5)$ solution containing 0 or $30 \mu \mathrm{M} \mathrm{Al}$ for 24 h . Relative root elongation was calculated as the following: root elongation with $\mathrm{Al} /$ root elongation without Al $\times 100$.


Supplementary Figure 2. Correlation of the gene expression ratio between RNA-seq data and quantitative real-time PCR (qRT-PCR) results. There were 17 genes randomly selected and subjected to qRT-PCR analysis. Histone H3 was used as an internal standard. qRT-PCR data (fold change of the gene expression in response to Al ) were plotted against data (fold change of the gene expression in response to Al ) from RNA-seq. Both x and y -axes are shown in a log2 scale. r indicates the correlation coefficient.
(a)

(b)


Supplementary Figure 3. Sequence comparison of the promoter (a) and coding sequence (CDS) regions (b) of ART1 between Kasalath and Jinguoyin. The promoter and coding region sequences of Kasalath and Jinguoyin data were taken from the genome resequencing data, while the reference sequence of Nipponbare was taken from RAP-DB (https://rapdb.dna.affrc.go.jp/) and aligned by ClustalW.

Supplementary Table 1 Primer sequences used for investigating gene expression.

| Gene | RAPDB ID | Forward primer | Reverse primer |
| :---: | :---: | :---: | :---: |
| Histone H3 | Os06g0131001 | GGTCAACTTGTTGATTCCCCTCT | AACCGCAAAATCCAAAGAACG |
| OsART2 | Os04g0165200 | GACAGATCACGTACGGGATTGA | CGAGCATGAAATGGGAACCTAC |
| OsCDT3 | Os01g0178300 | ATGTACAACCCTCCGGCGGC | TCAGCAGCAGCAGAGGCATTCG |
| OsMGT1 | Os01g0869200 | GCAAAGACTTGGAATCTCAGAC | CAGATGCGTACTTGTGTGAATC |
| OsFRDL4 | Os01g0919100 | CCATCTACATGAGCGTCAGAG | TCATTTGCGAAGAAACTTCCAC |
| OsNrat1 | Os02g0131800 | GAGGCCGTCTGCAGGAGAGG | GGAAGTATCTGCAAGCAGCTCTGATGC |
| OsALS1 | Os03g0755100 | ATTGTTTCAAGAGATGTTCGGC | CGAGCAACTACTCTCTCACTAG |
| OsSTAR2 | Os05g0119000 | ACCTCTTCATGGTCACCGTCG | CCTCAGCTTCTTCATCGTCACC |
| OsSTAR1 | Os06g0695800 | AGAACATCGAAGAGGCGATC | GGATCTGCTTCACGCTGT |
| OsFRDL2 | Os10g0206800 | TGATTCTTGTGGCAATTGTCAG | TTAAGAATCCTGCAAGCATTCG |
| OsART1 | Os12g0170400 | CAGTGCTTCTCGTGGGTCTT | CCTGTGCGTGAA GAACCACT |
|  | Os09g0280500 | CTGAGGAGGCTTGCACAGAA | CTGAAGGGCCAGAAGGAAGG |
|  | Os06g0163000 | AGAGGCAAACTCTGACGTGG | TGGACTGGATTAGGAGGCGA |
|  | Os02g0528900 | GTTTCAGGGCGTTGGCACTA | GCTCCTTTCTAAGCCTTCCACA |
|  | Os06g0180300 | CTCCGATTCTTGTGGCGTTT | GGTCCAGATCGTCTCCACG |
|  | Os09g0266000 | AGCTGCAGATCGTGTATGGG | TACAGCATGTTTGCAAGGCG |
|  | Os06g0152600 | CGCTTGCCGTGCTCATGTT | TACATGCGGTGGTGAGGCTTG |
|  | Os02g0540700 | ACCACCCACATCATGCCTTT | AGTCATTCTGCCCTTCCCTTG |
|  | Os01g0935800 | GCAGCATCTACCAAGACCCA | ATCCGTCACCTCGTTGTTCG |
|  | Os04g0521100 | CACTGGATCTTCTGGGTGGG | GACGCAGAAAGCCAGAAACC |
|  | Os07g0551700 | AGTTTGATCACTTCTAACCGCC | AGTGTGCGCTGGGTATATGT |
|  | Os07g0689800 | GTTTGAAGCGAAGCGTTGGT | TGCCTTCTGTGGGTCGTTTT |
|  | Os10g0404300 | ACTGTCTCGCATCGCATTCT | CGATCTCCGGCACTAGCAAT |
|  | Os02g0264800 | GATCGTTGTTTGGTGGTGCG | AAATGAACGAATCCAGCACGC |
|  | Os06g0711900 | GTGCATCGTCCTTGGTAGGC | GACCGGCGAAGAACAGCAAT |
|  | Os01g0274500 | GGAATTGAAGGGGCTCTGTTT | GGCAACATCAAAAGTACGCCA |

