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2. Abbreviations

BOP, (Benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate; BuLi, butyllithium;
CuAAC, Copper(l)-catalyzed Azide-Alkyne Cycloaddition; DCM, dichloromethane; DEPT, Distortionless
Enhancement by Polarization Transfer; DIBAL-H, diisobutylaluminum hydride; DIPEA, N,N-
diisopropylethylamine; DMF, N,N-dimethylformamide; DOTA, 1,4,7,10-tetraazacyclododecanel,4,7,10-
tetraacetic acid; ESI-MS, electrospray ionization mass spectrometry; HATU, O-(7- azabenzotriazol-1-yl)-
N,N,N',N'-tetramethyluronium hexafluorophosphate; HPLC, high-performance liquid chromatography;
hSST2R, human somatostatin receptor subtype 2; IPA, isopropanol; ISA'HCl, imidazole-1-sulfonyl azide
hydrochloride salt; MeOH, methanol; NMR, nuclear magnetic resonance; RT, room temperature; r,
retention time; TBAF, tetra-n-butylammonium fluoride; TBTA, tris[(1-benzyl-1H-1,2,3-triazol-4-
yl)methyl]amine; THF, tetrahydrofuran; TLC, thin layer chromatography; TFA, trifluoroacetic acid; TIS,
triisopropylsilane;



3. Synthesis of building blocks

Route 2 (f,g,h) was chosen for the synthesis of Fmoc-L-Phe-CCH given the minimal racemization observed
following this synthetic path. The rest of the amino alkynes were synthesized following route 1 (c,d,e).
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Scheme S1: R refers to amino acid specific side chain. Rz corresponds to the protected side chains of Asn, DTrp, Thr
and Rs corresponds to the side chain of Phe. a) i) amino acids, HATU, DIPEA ii) piperidine; b) ISA-HCI, DIPEA; Route
1 c¢) N,O-dimethylhydroxylamine hydrochloride salt, BOP, DIPEA; d) DIBAL-H; e) Bestmann-Ohira reagent, KoCOs,
MeOH; Route 2 f) (S)-(-)-tert-butylsulfinamide, CuSOs; g) BuLi, Ethynyltrimethylsilane, AlMes; h) i) TBAF ii) HCI iii)
DIPEA, FmocOSu; i) tetrakis(acetonitrile)Cu(I) hexafluorophosphate, DIPEA, TBTA.

Route 1[1]
3.1 Synthesis of Weinreb amides

BOP (1 equiv.), DIPEA (2.5 equiv.) and N,O-dimethylhydroxylamine hydrochloride (1.2 equiv.) were
added to a solution of the corresponding Fmoc-protected amino acid (1 equiv.) in DCM (0.1 M). The
solution was stirred overnight at room temperature (RT). Completion of the reaction was determined by
TLC. The solvent was evaporated under reduced pressure and the crude was purified via flash
chromatography.

3.2 Synthesis of a-amino alkynes

The Fmoc-protected Weinreb amide (1.0 equiv.) was dissolved in anhydrous DCM (0.1 M) in an oven dried
flask under argon atmosphere and the solution was cooled to -78°C (acetone/dry ice bath). DIBAL-H
(3.0 equiv.) was dropwise added under inert atmosphere and the mixture was stirred at -78°C until the
reaction was completed (typically 2 h). The remaining DIBAL-H was quenched by addition of MeOH
(1 mL) and the reaction mixture was allowed to warm to 0°C (ice/ water bath). Additional MeOH (1 mL)
was added along with K2COs (3.0 equiv.) and the Bestmann-Ohira reagent (2.0 equiv.). The reaction stirred
at RT overnight. After the addition of DCM and an aqueous solution of 0.5% sodium tartrate the reaction
mixture was stirred vigorously. Once both phases became clear, the organic phase was separated, washed
with brine, dried over anhydrous Na:50: and concentrated under reduced pressure. Two different
approaches were taken depending on the result obtained at this point. If no Fmoc deprotection was
observed the crude was purified by flash chromatography.



In case deprotection of Fmoc group was observed, the crude was dissolved in DCM (0.1 M) and DIPEA (2.5
equiv.) and Fmoc-OSu (2 equiv.) were added, and the reaction was stirred at RT overnight. After
completion, the solvent was removed under reduced pressure and the crude was purified via flash
chromatography.

Route 2[2]
3.3 Synthesis of N-sulfinyl imine

(5)-(-)-tert-butylsulfinamide (1.0 equiv.) was dissolved in DCM (1M) and the freshly distilled
phenylacetaldehyde (1.2 equiv.) was added followed by CuSOs (1.5 equiv.). The reaction was stirred at RT
for 72 h and the conversion to the corresponding sulfinimine was checked by TLC. After completion, an
aqueous solution of KHSOu4 (5%) was added to the suspension. The aqueous layer was extracted with DCM,
the combined organic phases were dried over anhydrous Na250s and the solvent was removed under
reduced pressure. The crude was purified by flash chromatography.

3.4 Synthesis of N-sulfinyl propargylamines

A solution of n-BuLi (1.6 M in anhydrous hexane, 1.6 equiv.) was dropwise added at -78°C (acetone/ dry
ice bath) to an ethynyltrimethylsilan solution (0.85 M in anhydrous THF, 1.5 equiv.) in an ovendried flask
under argon atmosphere. The reaction was stirred at -78°C for two h. Then, a 0.1 M solution of the N-
sulfinyl imine (1.0 equiv.) and AlMes (0.5 equiv.) was prepared in anhydrous toluene and dropwise added
to the first reaction mixture. Following completion (typically 2 h), verified by TLC, the reaction was let
warm up to RT and diluted with an aqueous solution of KHSO4 (5%). The mixture was washed with one
additional portion of KHSOs (5%) and the combined aqueous layers were extracted with Et20. The
combined organic layers were dried over Na25Os and the crude mixture was concentrated under reduced
pressure. The crude product was used in the following step without further purification.

3.5 Desilylation of N-sulfinyl propargylamines

The TMS protected N-sulfinyl propargylamine (1.0 equiv.) was dissolved in THF (final concentration of 0.2
M) and TBAF (2.0 equiv.) solution in THF (1 M) was dropwise added at 0 °C. The reaction was stirred for
2hat0°Cand 2h at RT. The mixture was quenched with saturated aqueous solution of NH4Cl. The organic
layer was separated, and the aqueous layer was extracted with Et2O. The organic layers were combined,
dried over anhydrous Na250s and concentrated in vacuo. The product was used without further
purification.

3.6 Sulfinamide cleavage and Fmoc protection

The N-sulfinyl propargylamine was dissolved in MeOH (0.1 M) and a 4M solution of HCI (3.0 equiv) in
dioxane was dropwise added while stirring. The deprotection was verified by TLC (typically 30 min) and
the reaction mixture was concentrated under reduced pressure. The residue was dissolved in DCM (0.1 M)
and DIPEA (2.5 equiv.) and Fmoc-OSu (2 equiv.) were added, and the reaction was let stir at RT overnight.
After completion, the solvent was removed in vacuo and the crude was purified via flash chromatography.



4. Characterization of a-amino alkynes

4.1 Fmoc-L-Phe-CCH

4

/\ NHFmoc
TH NMR (600 MHz, CDCls) 6 7.77 (d, 5] = 7.5 Hz, 2H), 7.57 (dd, 3] = 5.6, 5.6 Hz, 2H), 7.41 (dd, s/ =7.5,7.5

Hz, 2H), 7.33 - 7.25 (m, 7H), 4.99 — 4.91 (m, 1H), 4.80 — 4.72 (m, 1H), 4.48 (d, ] = 8.9 Hz, 1H), 4.47 — 4.27 (m,
1H), 4.21 (t, 3] = 6.7 Hz, 1H), 3.21 — 2.80 (m, 2H), 2.32 (d, 4] = 2.2 Hz, 1H).

13C NMR (151 MHz, CDCls) 6 155.3, 144.0, 143.9, 141.5, 136.1, 13007, 128.5, 127.9, 127.2, 125.2, 125.1, 120.2,
772,72.8,67.0,47.3, 44.4, 41.6.

ESI-HRMS: [M+Na]* m/z calculated for C2sH21NNaO2: 390.1464, measured: 390.1464

The analytical data was found identical to the one reported in literature.
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Figure S1: '"H NMR of Fmoc-L-Phe-CCH (CDCls).
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Figure S2: 3C NMR of Fmoc-L-Phe-CCH (qDEPT-135, CDCls).
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Figure S3: HRMS analysis of Fmoc-L-Phe-CCH (ESI-MS).
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Figure S4: Chiral-HPLC analysis of Fmoc-L-Phe-CCH showing partial racemization. Fmoc-D-Phe-CCH (Peak 1,
r=18.610 min, 5%) and Fmoc-L-Phe-CCH (Peak 2, rt= 20.673 min, 95%). Isocratic elution in 20% isopropanol (IPA) in
Hexane.



4.2 Fmoc-L-Thr(tBu)-CCH

1H NMR (600 MHz, CDCl3) » 7.77 (d, ] = 7.5 Hz, 2H), 7.61 (d, ] = 7.0 Hz, 2H), 7.41 (dd, ] = 7.4, 7.4 Hz, 2H),
7.32 (td, ] = 7.5, 0.8 Hz, 2H), 5.17 (s, 1H), 4.46 — 4.38 (m, 2H), 4.24 (t, 5] = 6.5 Hz, 1H), 3.84 (s, 1H), 2.28 (d, 5/
= 2.4 Hz, 1H), 1.24 (s, 9H), 1.19 (d, 4] = 6.2 Hz, 4H).

13C NMR (151 MHz, CDCls) 6 155.9, 144.0, 143.9, 141.5, 127.8, 127.2,125.2,120.1, 82.1, 77.4,77.2,77.1, 76.9,
74.3,72.1,68.4, 67.1,53.6, 49.3, 47 .4, 28.7, 28.5, 28.4, 19.8, 19.4.

ESI-HRMS: [M+H]* m/z calculated for C24H2sNQOs: 378.2064, measured: 378.2058

The analytical data was found identical to the one reported in literature.
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Figure S5: '"H NMR of Fmoc-L-Thr(tBu)-CCH (CDCls).
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Figure S6: °C NMR of Fmoc-L-Thr(tBu)-CCH (DEPT, CDCls).
Imenss +MS, 0.1-0.4min #3-24
x10°4 400.1880
20]
159
1.0
051 378.2058
0.0 . S
" 1+ C24H27NO3, M+nH, 378.2064)
oo0e]  378:2084
15001
1000+
5001
0 A . . ; . .
380 385 390 395 400 miz

Figure S7: HRMS analysis of Fmoc-L-Thr(tBu)-CCH (ESI-MS).
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Figure S8: Chiral-HPLC analysis of Fmoc-L-Thr(OtBu)-CCH showing partial racemization. Fmoc-L-Thr(OtBu)-CCH
(Peak 1, r:=13.457 min, 97%) and Fmoc-D-Thr(OtBu)-CCH (Peak 2, r:=15.673 min, 3%). Isocratic elution in 10% IPA in
Hexane.
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4.3 Fmoc-D-Trp(Boc)-CCH

BocN

= NHFmoc
TH NMR (700 MHz, CDCls) d 8.14 (s, 1H), 7.77 (d, ] = 7.3 Hz, 2H), 7.70 — 7.49 (m, 4H), 7.40 (t, | = 7.4 Hz,

2H), 7.36 - 7.19 (m, 4H), 5.12 (d, ] =7.0 Hz, 1H), 4.87 (s, 1H), 4.42 (dt, ] =17.5, 10.2 Hz, 2H), 421 (t, ]=7.0
Hz, 1H), 3.27 - 3.15 (m, 1H), 3.14 - 2.88 (m, 1H), 2.32 (d, ] = 2.3 Hz, 1H), 1.67 (s, 9H).

BC NMR (176 MHz, CDCls) 5 155.5, 149.8, 143.9, 143.9, 141.4, 135.4, 130.8, 127.9, 127.8, 127.2, 127.2, 125.2,
125.2,124.6, 124.6, 122.7,120.1, 120.1, 119.2, 115.4, 115.2, 83.8, 82.7, 77.2, 72.6, 67 .2, 47 .3, 43.7, 31.5, 28.3.

ESI-HRMS: [M+Na]* m/z calculated for Cs2H3oN2NaQOs: 529.2028, measured: 529.2028.

The analytical data was found identical to the one reported in literature.
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Figure S9: '"H NMR of Fmoc-D-Trp(Boc)-CCH (CDCls).
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Figure S10: 3C NMR of Fmoc-D-Trp(Boc)-CCH (qDEPT-135, CDCls).
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Figure S12: Chiral-HPLC analysis of Fmoc-D-Trp(Boc)-CCH showing partial racemization. Fmoc-L-Trp(Boc)-CCH

(Peak 1, rt= 39.483 min, 7%) and Fmoc-D-Trp(Boc)-CCH (Peak 2, rt= 45.550 min, 93%). Isocratic elution in 10% IPA in
Hexane.
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4.4 Fmoc-L-Asn(Trt)-CCH
NHTrt

o)

& NHFmoc

1H NMR (500 MHz, CDCls) 8 7.75 (d, ] = 7.5 Hz, 2H), 7.56 (d, ] = 7.3 Hz, 2H), 7.39 (dd, ] = 7.4, 7.4 Hz, 2H),
7.35-7.19 (m, 20H), 6.80 (s, 1H), 6.27 (d, ] = 6.5 Hz, 1H), 4.81 (s, 1H), 4.34 (d, ] = 7.1 Hz, 2H), 4.18 (d, ] = 6.9

Hz, 1H), 2.73 (s, 2H), 2.37 (s, 1H).

3C NMR (151 MHz, CDCls) d 168.9, 144.5, 144.0, 141.4, 128.9, 128.2, 127.8, 127.4, 127.2, 125.3, 120.1, 82.4,
77.2,72.0,71.2,67.3,47.2,41.8,40.7, 29.8.
ESI-HRMS: [M+Na]* m/z calculated for CzsHs2N2NaQOs: 599.2305, measured: 599.2303

The analytical data was found identical to the one reported in literature.
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Figure S13: '"H NMR of Fmoc-L-Asn(Trt)-CCH (CDCls).
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Figure S14: C NMR of Fmoc-L-Asn(Trt)-CCH (qDEPT-135, CDCls).
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Figure S15: HRMS analysis of Fmoc-L-Asn(Trt)-CCH (ESI-MS).
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Figure S16: Chiral-HPLC analysis of Fmoc-L-Asn(Trt)-CCH. Fmoc-L-Asn(Trt)-CCH (Peak 1, rt= 22.780 min, >99%).
Isocratic elution in 10% IPA in Hexane.
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5. Characterization of triazolo-peptidomimetics

Table S1. HPLC-MS characterization of peptide and triazolo-peptidomimetic conjugates (replica of Table 1 in the
main manuscript)

Compound ! Structure 2 P[:;S? m/z,[][)h:]ziH]”
AT2S [DOTA, D-Trp#]SST-14 >95 1012.9581
XGl1 [DOTA, Asn>-W[Tz]-Phes, D-Trp|SST-14 >95 1024.9629
XG2 [DOTA, Phet-W[Tz]-Phe’, D-Trp|SST-14 >95 1024.9634
XG3 [DOTA, D-Trps-W[Tz]-Lys?, D-Trp*|SST-14 >95 1024.9619
XG4 [DOTA, Thri0-¥[Tz]-Phe!t, D-Trp|SST-14 >95 1024.9620
XG5 [DOTA, Phe!-W[Tz]-Thr'2, D-Trp|SST-14 >95 1024.9635
natfn-XG1 ["In-DOTA, Asn®>W[Tz]-Phes, D-Trp$]SST-14 >95 1080.9044

1 AT2S is the unmodified all-amide bond reference compound [3] 2 W[Tz] represents the trans-amide bond replaced by
a 1,4-disubstituted 1,2,3-triazole 3 Purity was determined by reversed-phase HPLC *Molecular masses of peptides were
measured by ESI-MS coupled to an HPLC system 5 Expected m/z of AT2S =1012.9571, XG1-5 = 1024.9627 and "In-XGl1
=1080.9035
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Figure S17: Analytical HPLC chromatogram of purified AT2S, rt= 8.078 min.
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Figure S18: ESI-HRMS of purified AT2S.
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Figure S19: Analytical HPLC chromatogram of purified XG1, rt=7.818 min.
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Figure S20: ESI-HRMS of purified XG1.
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Figure S21: Analytical HPLC chromatogram of purified XG2, rt= 9.161 min.
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Figure S22: ESI-HRMS of purified XG2.
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Figure S23: Analytical HPLC chromatogram of purified XG3, rt= 8.539 min.
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Figure S25: Analytical HPLC chromatogram of purified XG4, rt= 8.749 min.
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Figure S26: ESI-HRMS of purified XG4.
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Figure S27: Analytical HPLC chromatogram of purified XG5, rt=8.660 min.
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Figure S28: ESI-HRMS of purified XG5.
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Figure S29: Analytical HPLC chromatogram of purified ["*In]In-XG1, rt=7.810 min.
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Figure S30: ESI-HRMS of purified ["In]In-XG1.
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Figure S31: Analytical HPLC chromatogram of purified TATE, re=7.810 min.
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Figure S32: ESI-MS of purified TATE.
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6. yv-HPLC chromatograms
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Figure S33: v-HPLC of [""In]In-AT2S, rt=7.22 min.
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Figure S34: v-HPLC of ["In]In-XG1, rt=7.85 min.
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Figure S35: v-HPLC of ['"'In]In-XG2, rt=7.53 min.
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Figure S36: y-HPLC of ["In]In-XG3, rt= 6.98 min.
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Figure S37: v-HPLC of [""In]In-XG4, rt=7.95 min.
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Figure S38: yv-HPLC of ['"'In]In-XGS5, rt=7.72 min.
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7. Binding and internalizations studies
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Figure S39: Binding studies of ['"'In]In-XG1 in AR42] cell line. NSB stands for non-specific binding.
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Figure S40: Internalization studies of ['"In]In-XG1 in AR42] cell line. NSI stands for non-specific internalization.
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8. Competition binding assays
hSST:iR

LTT-SST-28: ICs0 = 0.67 = 0.26 nM (3)
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Figure S41: Validation of CHO-hSSTiR cell membranes with the LTT-SST-28 pansomatostatin reference.
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Figure S42: Representative competition binding experiment of XG1 (non-metal tagged) vs ['*I]I-LTT-SST-28 in CHO-

hSST1R cell membranes.
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Figure S43: Representative competition binding experiment of "In-XG1 vs ["®I]I-LTT-SST-28 in CHO-hSSTiR cell

membranes.
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hSST:R
LTT-SST-28: ICs0 = 0.33 nM

HEK293-hSST,R: LTT-SST-28 vs [*2I]I-LTT-SST-28
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Figure S44: Validation of HEK293-hSST2R cell membranes with the LTT-SST-28 pansomatostatin reference.
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Figure S45: Representative competition binding experiment of XG1 (non-metal tagged) vs ['®I]I-LTT-SST-28 in
HEK293-hSST2R cell membranes.
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Figure S46: Representative competition binding experiment of "In-XG1 vs [*I]I-LTT-SST-28 in HEK293-hSST:R cell
membranes.
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hSST:R
LTT-SST-28: ICs0 = 0.08 nM
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Figure S47: Validation of HEK293-hSSTsR cell membranes with the LTT-SST-28 pansomatostatin reference.
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Figure S48: Representative competition binding experiment of XG1 (non-metal tagged) vs ['®I]I-LTT-SST-28 in
HEK293-hSSTsR cell membranes.
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Figure S49: Representative competition binding experiment of "In-XG1 vs [*I]I-LTT-SST-28 in HEK293-hSST3R cell

membranes.
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hSSTsR

LTT-SST-28: ICs0 = 0.11 nM

HEK293-hSSTR: LTT-SST-28 vs [12°I]I-LTT-SST-28
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Figure S50: Validation of HEK293-hSSTsR cell membranes with the LTT-SST-28 pansomatostatin reference.

HEK293-hSSTsR: XG1 vs [*2°]I-LTT-SST-28
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Figure S51: Representative competition binding experiment of XG1 (non-metal tagged) vs ['®I]I-LTT-SST-28 in
HEK293-hSSTsR cell membranes.
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Figure S52: Representative competition binding experiment of "In-XG1 vs [*I]I-LTT-SST-28 in HEK293-hSST5R cell
membranes.
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9. Structure of Entresto® and in vivo release of sacubitrilat
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Figure S53: (a) Structure of the molecules contained in Entresto®, Sacubitril and Valsartan and (b) Release of sacubitrilat
by esterases (LBQ657)[4].
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10. Metabolic stability experiments
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Figure S54: v-HPLC chromatogram of the metabolic stability (a) of [""In]In-XG1 (grey), (b) by co-injection of the
labeling solution reference with the blood sample on the column (blue) and (c) quality control of ['"'In]In-XG1 (red).
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Figure S55: y-HPLC chromatogram of the metabolic stability of (a) ['"'In]In-XG1 in the Entresto® treated mice (grey)
and (b) quality control of [""In]In-XG1 (red).
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11. Tumor/kidney uptake studies
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Figure S56: Estimation of radioactivity uptake of [''"'n]In-XG1 at 4 h pi (a) selectively shown for kidneys (310%IA/g),
HEK293-hSST2R tumor (1.61%IA/g) and wtHEK293 tumor (0.56%IA/g) in a control mouse (blue bars) and (b) kidneys
(225%1A/g), HEK293-hSST2R (2.57%IA/g) and wtHEK293 (0.56%IA/g) in a mouse pretreated with Entresto® (green

bars).
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