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Supplementary materials and methods 

Morphology of Ga/OA NPs was imaged in a Jeol JSM-7600F (JEOL, Tokio, Japan) scanning electron 

microscope operating at 5 kV. 20 µL of colloidal solution of Ga/OA NPs was dried on a piece of Si wafer, 

which was stuck on carbon tape and coated with 5 nm of carbon (using precision etching coating system 

(PECS) Model 682, Gatan, Pleasanton, CA, USA) before observation. Their size distribution was 

analysed using ImageJ software and normal distribution fitting in Python. TEM imaging of Ga/OA NPs 

was performed on a Jeol JEM-2100 transmission electron microscope operating at 200 kV. 20 µL of 

colloidal solution of Ga/OA NPs (in chloroform) was dried on a lacey carbon/Cu TEM grid for 

observation. 

Diffuse reflectance infrared Fourier transform (DRIFT) spectrum of oleic acid (OA) annd Ga/OA 

NPs was measured in Perkin Elmer Spectrum 400 MIR spectrophotometer (Perkin Elmer, Waltham, 

Massachusetts, USA). Sample of OA or Ga/OA NPs was mixed with KBr by dropping a few µL  of OA 

or Ga/OA colloidal solution onto KBr powder, drying in air and homogenizing by pestle in a mortar. 

For calculating the theoretical UV-VIS spectra of Ga NPs, a MATLAB program (The Metal Nanoparticle 

(MNP) simulator) created by Guido Goldoni was used. It is based on the MATLAB programs written 

by Christian Mätzler [1] using Mie scattering theory [2]. Dielectric function for liquid gallium was taken 

from ref. [3]. Refractive index of PLA was obtained from reference [4] and the average value between 

220 and 280 nm (i.e., 1.52) was used in the calculation. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary images 
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Figure S1. Colloidal Ga/OA nanoparticles: (a) morphology under SEM; (b) morphology under TEM; (c) detailed 

morphology by TEM; (d) size distribution based on SEM images. 
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Figure S2: Additional IR spectra: (a) DRIFT spectrum of OA and colloidal Ga/OA NPs. Both spectra exhibit the 

most pronounced OA vibrations [5–10]: at 3007 (𝜈as (=C-H)), 2955 (𝜈s (=C-H)), 2927 (𝜈as (-C-H)), 2855 (𝜈s (-C-H), 3000 

((𝜈(-COO-H, wide), overtones and combinations of 𝛿 (OH) (near 1420 cm-1) and 𝜈 (C-O) (near 1300 cm-1) in the 2700-

2500 cm-1 region, 1712 (𝜈 (C=O)), 1465 (𝛿 (CH2)), 1378 (𝛿 (CH3)), 1285 (𝜈 (C-O)), 1248 (𝜈 (C-O) dimeric+ 𝜌s (cis-CH)), 

1210+1180 (𝜈as (C-O-C), doublet), 938 (𝜔in(O-H··O)) , 723 cm-1 (𝜔in(CH2)). However, the spectrum of Ga/OA NPs 

contains an additional band at 1556 cm-1, which is related to COO- in bidentate bonding of OA to the surface of Ga 

NPs, while vibrations related to COOH group, including the most prominent C=O vibration at 1712 cm-1, are 

impeded [9,11–14]. The remaining presence of the band at 1712 cm-1 could be due to excess of OA or some OA 

molecules are also monodentatly bound to the surface of Ga NPs; (b) full-range ATR IR spectra of PLA and Ga/PLA 

nanocomposites in the main article (Fig. 1b). 
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Figure S3: UV-VIS spectra of Ga/PLA after subtraction of spectrum of PLA and calculated UV/VIS spectra of 

spherical Ga NPs with diameter of 30 nm in PLA (refractive index of 1.52 was taken for calculation). 

 
Figure S4: Comparison of two techniques for evaluation of contact bactericidal effect of Ga/PLA in PBS. 
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Figure S5. Effect of poly(L-lysine) on the aqueous wettability of the film surface: (a) PLA on the same spot, 

comparison with deionised water as a reference; (b) Ga/PLA2.4% average values with representative water droplet 

images. Washing with water restored the wetting angle that was decreased by polylysine addition. 
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Figure S6. Phase contrast optical microscope images of HaCaT keratinocytes after three days of growth on the 

following films: (a) PLA; (b) Ga/PLA0.08%; (c) Ga/PLA0.8%; (d) Ga/PLA2.4%. 

 

 

  
Figure S7. SEM image of non-washed Ga/PLA0.8% after 24-hour exposure to MH liquid. 
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