
File S1: Python code for used algorithms 
 

LASSO regression script: 
 
 
from sklearn.linear_model import Lasso 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import mean_squared_error 
import numpy as np 
 
# Load the dataset 
X, y = load_dataset() 
 
# Split the dataset into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Create a Lasso regression model 
lasso = Lasso(alpha=0.1) 
 
# Fit the model to the training data 
lasso.fit(X_train, y_train) 
 
# Make predictions on the testing data 
y_pred = lasso.predict(X_test) 
 
# Calculate the mean squared error 
mse = mean_squared_error(y_test, y_pred) 
print("Mean Squared Error:", mse) 
 
# Get the coefficients of the Lasso regression model 
coefficients = lasso.coef_ 
print("Coefficients:", coefficients) 
 

 
Comments: 
 
The scripts uses the libraries sklearn.linear_model, sklearn.model_selection, 
sklearn.metrics and numpy. 
 
The dataset is loaded and split it into training and testing sets using train_test_split(). 
The LASSO regression model with an alpha value of 0.1 (see next script for a variable 
lambda setting to select optimal factors reduction). 
  
The model is trained using the function fit(). Afterwards predictions are made on the 
testing data using predict(). The mean squared error is calculated 
using mean_squared_error(). Finally, the mean squared error and the coeficients of the 
LASSO regression are displayed. 
 
 
 
 
 
 



False Discovery Proportion vs lambda parameter in LASSO regression script: 
 
 
from sklearn.linear_model import Lasso 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import mean_squared_error 
import numpy as np 
 
# Load the dataset 
X, y = load_dataset() 
 
# Split the dataset into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Define a list of lambda values to try 
lambda_values = [0.01, 0.1, 1, 10] 
 
# Iterate over lambda values 
for lambda_val in lambda_values: 
    # Create a Lasso regression model with the current lambda value 
    lasso = Lasso(alpha=lambda_val) 
 
    # Fit the model to the training data 
    lasso.fit(X_train, y_train) 
 
    # Make predictions on the testing data 
    y_pred = lasso.predict(X_test) 
 
    # Calculate the mean squared error 
    mse = mean_squared_error(y_test, y_pred) 
    print("Lambda:", lambda_val) 
    print("Mean Squared Error:", mse) 
 
    # Get the coefficients of the Lasso regression model 
    coefficients = lasso.coef_ 
    print("Coefficients:", coefficients) 
 

 
Comments: 
 
This script is a modification of the previous one where a list of alfa values is used to see 
its effect on the False Discovery Proportion (FDP) provided by each LASSO regression 
solution. 
 
This modified script shows the mean squared error and the coefficients for each alfa so 
that different alfa values affect the model's performance and the sparsity of the 
coefficients. The FDP refers to the proportion of falsely selected variables, and it can be 
indirectly assessed by examining the coefficients and their magnitudes. 
 
 
 
 
 
LASSO regression with cross-validation to select optimal regularization factor: 



 
from sklearn.linear_model import LassoCV 
from sklearn.model_selection import train_test_split 
from sklearn.metrics import mean_squared_error 
import numpy as np 
import matplotlib.pyplot as plt 
 
# Load the dataset 
X, y = load_dataset() 
 
# Split the dataset into training and testing sets 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
 
# Create a LassoCV regression model 
lasso = LassoCV(cv=5) 
 
# Fit the model to the training data 
lasso.fit(X_train, y_train) 
 
# Get the lambda (alpha) values used during cross-validation 
lambdas = lasso.alphas_ 
 
# Get the mean squared error for each lambda value 
mse_values = lasso.mse_path_.mean(axis=1) 
 
# Plot the sum of squared error vs lambda 
plt.plot(lambdas, mse_values) 
plt.xlabel('Lambda (alpha)') 
plt.ylabel('Mean Squared Error') 
plt.title('Sum of Squared Error vs Lambda') 
plt.show() 
 
# Get the coefficients of the Lasso regression model for the best lambda 
best_lambda = lasso.alpha_ 
best_model = Lasso(alpha=best_lambda) 
best_model.fit(X_train, y_train) 
coefficients = best_model.coef_ 
 
# Plot the coefficients vs lambda 
plt.plot(lambdas, coefficients) 
plt.xlabel('Lambda (alpha)') 
plt.ylabel('Coefficients') 
plt.title('Coefficients vs Lambda') 
plt.show() 

 
Comments: 
 
In this updated code the LassoCV class is used instead of Lasso to perform the LASSO 
regression with cross-validation. This script includes a 5-fold cross-validation and 
automatically selects the best lambda value based according to the outcome of the 
cross-validation.  
 
After fitting the model to the training data, the lambda values used during cross-validation 
(lasso.alphas_) and the mean squared error for each lambda value 



(lasso.mse_path_.mean(axis=1)) are retrieved and kept. A plot showing the sum of 
squared error vs lambda is displayed using matplotlib.pyplot.plot(). 
Next, the best LASSO regression model with the best lambda value (best_lambda) is fit 
and trained. Coefficients of this best model (best_model.coef_) are plotted vs lambda.  
 
This modification of hte previous algorithm allows to see how the sum of squared error 
and the coefficients change with different lambda values, providing insights into the 
trade-off between model complexity and error. 
 
 
 


