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Stock solution preparations
Glacial acetic acid buffer (0.1 M, pH 5.0) preparation:
Prepare 800 mL of deionized water in a suitable container.
Add 5.772 g of sodium acetate to the solution.
Add 1.778 g of glacial acetic acid to the solution.
Adjust the solution to the preferred pH using 10 M HCl (typically pH ≈ 5.0).
Add deionized water until the volume is 1 L.

Glacial acetic acid buffer (0.1 M, pH 5.0) preparation:
Dissolve 20.0 g NaOH pellets in 80 ml deionized water in a beaker.
When cooled, bring the final volume to 100 ml. 
Transfer the solution to a glass bottle and label the reagent.
Standard calibration curve
The absorbance values of amoxicillin trihydrate (AT) were measured at a λ-Max of about 272 nm (Figure S7). A total of 50 mg of the drug was accurately weighed and dissolved in a few ml of 0.1 N HCl in a 100 ml volumetric flask and further diluted to 100 ml with 0.1 N HCl to produce a 1 mg/ml stock solution. A stock solution was prepared from the standard solution to give a concentration of 100 µg/ml in 0.1 N HCl. Amounts of 0.5, 1, 1.5, 2, 2.5,3, and 3.5 ml were pipetted out for the 10 ml volumetric flasks. Hence, the volume was made up of the drug with 0.1 N HCl and produced 9, 14, 19, 24, 29, 34, and 40 µg/ml of standard dilutions for the experiment [1]. 
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Figure S1. The mechanistic explanation for the probable synthesis of the SPHHs. Proposed crosslinking of pectin–2HEMA–N,N-MDAc–poloxamer-407; preparation of pectin (hybrid agent) and monomer hydroxyethyl methacrylate (2HEMA) followed by the synthesis of SPHHs from N,N-methylene-bis-acrylamide (BIS) (crosslinking agent), APS (ammonium persulfate), TEMED (N,N,N,N-tetramethylenediamine) (polymerization initiator pairs), pluronic F127/poloxamer 407 (foam stabilizers), and sodium bicarbonate (foaming agents) [2-4].
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Figure S2. Schematic representation of the synthesis procedure of a semi-IPN for SPHHs [5].	Comment by Deborah Peterson: Please correct “intentive” to “intensive” in figure.

I have confirm
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Figure S3. Schematic representation of the drying of super-porous hybrid hydrogels comprising dehydration, filtration, and drying procedures [6].
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Figure S4. Schematic design of the drug-loading process of SPHHs-AT absorption and drying.
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Figure S5. Super-porous hybrid hydrogels synthesis procedure steps.
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Figure S6. Overlay diagram of (a) FTIR spectra of SPHHs-AT-3 and AT; (b) DSC thermograms of AT, SPHHs, and SPHHs-AT-3; (c) X-ray diffraction of AT and SPHHs-AT-3.
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Figure S7. Calibration curve; absorbance values of AT were measured at a λmax of 272 nm [7].
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Figure S8. UV spectrum of (a) water ; (b) amoxicillin trihydrate (AT); (c) SPHHs-AT with pH 1.2 ; (d) SPHHs-AT with pH 7.4 [8-10].
Table S1. Synthesis of semi-IPN super-porous hybrid hydrogels (SPHHs)† of amoxicillin trihydrate (AT).
	Ingredient
	SPHHs-AT-1
	SPHHs-AT-2
	SPHHs-AT-3
	SPHHs-AT-4
	SPHHs-AT-5 
	SPHHs-AT-6 
	SPHHs-AT-7 

	Pectin a 
	4
	6
	8
	4
	4
	4 
	4 

	2HEMAb
	4
	4
	4
	6
	8 
	4 
	4 

	BIS c 
	1
	1
	1
	1.5
	2 
	2.5 
	3   

	F127 d
	5
	5
	5
	5.5
	5 
	4.5 
	4 

	APS e 
	0.1
	0.1
	0.1
	0.1
	0.1 
	0.1 
	0.1 

	TEMEDf 
	0.1
	0.1
	0.1
	0.1
	0.1 
	0.1 
	0.1 

	NaCO3 mg
	80
	80
	80
	80
	80 
	80 
	80 

	AT mg
	50
	50
	50
	50
	50 
	50 
	50 


Herein,.
a 3% w/v in ml, b 10% v/v in ml, c 4% w/v in ml, d 10% w/v in ml pluronic F127/poloxamer 407, e 1% w/v in ml, f 2% v/v in ml.
† semi-IPN super-porous hybrid hydrogels synthesis [11,12].
Table S2. pH-dependent swelling appearance of SPHHs-AT.
	SPHHs-AT
	Time min
	pH-1.2 (AV)
	pH-1.2 (SD)
	Time min
	pH-7.4 (AV)
	pH-7.4 (SD)

	3
	0
	0.4
	0.2
	30
	88.66
	1.25

	2
	5
	23.66
	1.52
	35
	70
	2

	1
	10
	36.5
	1.5
	40
	54
	2

	4
	15
	64.33
	1.52
	45
	35.5
	1.80

	5
	20
	72.66
	1.52
	50
	21.16
	1.25

	6
	25
	80.23
	0.87
	55
	10.16
	1.25

	7
	30
	83.66
	1.60
	60
	8.66
	1.52







Table S2. (Continued)
	SPHHs-AT
	Time min
	pH-1.2 (AV)
	pH-1.2 (SD)
	Time min
	pH-7.4 (AV)
	pH-7.4 (SD)

	3
	60
	8.66
	1.52
	90
	87.66
	2.51

	2
	65
	27.66
	1.52
	95
	67.5
	2.17

	1
	70
	38.16
	1.04
	99
	47.33
	2.08

	4
	75
	66.66
	1.75
	103
	31.33
	1.52

	5
	80
	71.33
	1.52
	110
	20.66
	1.52

	6
	85
	88.33
	2.08
	115
	10
	1

	7
	90
	88.66
	1.52
	120
	8
	1


Table S2. (Continued)
	SPHHs-AT
	Time min
	pH-1.2 (AV)
	pH-1.2 (SD)
	Time min
	pH-7.4 (AV)
	pH-7.4 (SD)

	3
	120
	7.5
	0.5
	150
	87.66
	1.52

	2
	125
	26
	1
	155
	66.66
	1.52

	1
	130
	39
	2
	160
	56.33
	1.52

	4
	135
	63
	1
	165
	27.16
	1.75

	5
	140
	76
	1
	170
	22
	1

	6
	145
	79.5
	1.3
	175
	11.83
	1.6

	7
	150
	87.5
	1.5
	180
	5.5
	1.32



Table S2. (Continued)
	SPHHs-AT
	Time min
	pH-1.2 (AV)
	pH-1.2 (SD)
	Time min
	pH-7.4 (AV)
	pH-7.4 (SD)

	3
	180
	8.33
	1.52
	210
	87.33
	1.52

	2
	185
	27.5
	1.32
	215
	71.83
	1.6

	1
	190
	41.5
	1.5
	220
	42
	2

	4
	195
	72.5
	1.5
	225
	25.16
	1.04

	5
	199
	76.5
	1.32
	230
	21
	1

	6
	205
	80.33
	1.52
	235
	14
	1

	7
	210
	87.33
	2.01
	240
	8.33
	2.01


Herein,.
SPHHs-AT-3 by the interchange of the swelling tool between (pH 1.2) HCl solutions and (pH 7.4) phosphate
buffer solutions (n =3, mean ± S.D); AV/SD= Average and standard deviation.
Table S3. Experimental data for gastroretentive SPHHs formulations.
	Sample (SPHHs)
	Density (g/cm3)†
	Sol–gel time (s)
	Compressive strength (N/m2) (n =3)
	% Drug content (n =3)   SPHHs-AT (mean ± SD)

	1
	0.651 ± 0.015
	24 ± 1
	5756.093 ± 29.783
	95.646 ± 0.674

	2
	0.568 ± 0.015
	25 ± 1
	4310.167 ± 17.737
	96.943 ± 1.008

	3
	0.503 ± 0.036
	26 ± 1
	4074.477 ± 20.636
	98.053 ± 0.319

	4
	0.684 ± 0.04
	31 ± 1
	6231.867 ± 29.613
	97.093 ± 0.305

	5
	0.747 ± 0.03
	27 ± 1
	7259.207 ± 50.028
	96.383 ± 0.380

	6
	0.798 ± 0.026
	30 ± 1
	7881.501 ± 40.606
	95.363 ± 0.536

	7
	0.844 ± 0.03
	32 ± 1
	8273.797 ± 30.495
	96.393 ± 0.183


† The forceps concept was used for density measurement, and a predetermined hexane volume was submerged for polymer [13].
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