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Preliminary exploration of data 

In the figure below, estimated dose adjustments were plotted as a function of phenotype, 
coded in expression grades of equal intervals from the PM to the UM phenotypes. 

 

Estimated dose adjustments, equally spaced phenotypic groups 

Several properties of the data are apparent from this plot. First, some substances appear 
not to be metabolized by CYP2C19. One study on mianserine (by Dahl et al. 1994) provides 
an adjustment that strongly contradicts physiological expectations, increasing dose by 
about 45% in PMs instead of decreasing. Second, the fitted line is a cubic polynomial, and 
shows the effect to be almost linear. Third, the spread upwards of the observations seems 
to be too large. 

In the following, we address these problems in a series of steps. First, we will estimate 
mean dose adjustments in each allelic phenotype separately to compute activity scores 
from the data. In this computation, we excluded data from substances that appear not to be 



metabolized by CYP2C19 (mianserine, maprotiline, fluoxetine and fluvoxamine). Second, we 
will test the linearity of the effect of these activity scores on dose adjustments by adding 
quadratic and cubic polynomials. Finally, we will evaluate the need of a logarithmic 
transformation of the data. 

Activity scores 

We first looked at the activity scores as may be estimated from these data by fitting a model 
where phenotypes are qualitative levels of a single factor, using studies as a random effect 
(to adjust for possible systematic differences in adjustment levels). This amounts to 
estimating the mean adjustements in each allelic group after allowing for random effects 
and possible other confounders. 

To estimate activity scores, we fix the EM group to zero, and set the effect of the IM group to 
-1 (as this group has one *2 allele). Note that the base and scale of a measure scale must be 
chosen by convention. We based the scale to the IM group because there are more data in 
this group than in the PM and RM groups. To weight individual studies appropriately, we 
estimate variance components of the variability within and between studies, 

𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑖 = 𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑖 + 𝑠𝑡𝑢𝑑𝑦𝑗[𝑖] + 𝜖𝑖 , 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑀 

𝑠𝑡𝑢𝑑𝑦𝑗 ∼ 𝑁(0, 𝜎𝑠𝑡𝑢𝑑𝑖𝑒𝑠), 

where 𝑖 indexes the 𝑁 datapoints and 𝑗 the 𝑀 studies. 

In this and all subsequent models, we face the problem of weighting datapoints by the 
amount of information provided by the sample size of the original studies. Since only 
information on sample size is provided in most studies, we assumed equal within-
datapoints variance and modelled the variance of the datapoints as normally distributed 
with two variance components, 

𝜖𝑖 ∼ 𝑁(0, 𝜎𝑤
2/𝑛𝑖 + 𝜎𝑏

2), 𝑖 = 1,… , 𝑁, 

 
where 𝜖𝑖 is the residual error, 𝑛𝑖 is the known number of observations in the datapoint in 
the 𝑖𝑡ℎ sample, and 𝜎𝑤

2  and 𝜎𝑏
2 are the within-datapoint and between-datapoint variances to 

be estimated from the data (this model is specified in levels.stan and levels_cov.stan). 

#get rid of EM measurements and keep only putative substrates 
cypx <- filter(cyp, Phenotype != "EM" & Selection == TRUE & Status == "OK") 
 
#identify substances for which we have estimates for all allelic phenotypes 
substances <- cypx %>% select(StudyID, Substance, Phenotype) %>%  
  group_by(Substance, Phenotype) %>%  
  summarize(count = n_distinct(Phenotype)) %>%  
  summarize(countphens = sum(count)) %>% filter(countphens > 3) 

## `summarise()` has grouped output by 'Substance'. You can override using 
the 
## `.groups` argument. 



#restrict the analysis to these substances 
cypx <- semi_join(cypx, substances, by = "Substance") 
 
#create a dummy variable for levels of phenotype as factor 
phen <- cypx$StudyID 
phen[cypx$Phenotype == "IM"] <- 1 
phen[cypx$Phenotype == "PM"] <- 2 
phen[cypx$Phenotype == "RM"] <- 3 
phen[cypx$Phenotype == "UM"] <- 4 
 
#create indicator variable for studies included in dataset 
studyID <- cypx$StudyID 
counter = 1 
for (i in 2:nrow(cypx)) { 
  if (cypx$StudyID[i-1] != cypx$StudyID[i])  
    counter <- counter + 1 
  studyID[i] <- counter 
} 
 
#set up variables for stan 
dat <- list( 
  N = nrow(cypx), 
  Q = 4, 
  M = max(studyID), 
   
  Adjustment = cypx$Adjustment, 
  Phenotype = phen, 
  Study = studyID, 
  nobs = cypx$Size 
) 
dat$logsigmaloc <- 4 
dat$logsigmascale <- 0.25 
bayesfit <- stan("levels.stan", data = dat, seed = 142, iter = 2000) 

# display estimates of activity scores computed relative to IM 
cf = select(as.data.frame(bayesfit), matches("phenotypes")) 
ActScoreIM <- cf[,1] * -1 
ActScore <- list() 
ActScore$EM <- 0 
ActScore$IM <- -1  
ActScore$PM <- cf[,2] / ActScoreIM 
ActScore$RM <- cf[,3] / ActScoreIM 
ActScore$UM <- cf[,4] / ActScoreIM 
ActScore$star17 <- (ActScore$RM * 2 + ActScore$UM) / 4 
ActScore <- as.data.frame(ActScore) 
Scores <- sapply(ActScore, median, simplify = "array") 
Scores <- rbind(Scores, sapply(ActScore, quantile,  
                               probs = 0.05, simplify = "array")) 
Scores <- rbind(Scores, sapply(ActScore, quantile,  
                               probs = 0.95, simplify = "array")) 



row.names(Scores) <- c("median", "5% lower", "95% upper") 
print(Scores, digits = 3) 

##           EM IM    PM    RM   UM star17 
## median     0 -1 -1.96 0.989 1.76  0.933 
## 5% lower   0 -1 -3.13 0.520 1.09  0.601 
## 95% upper  0 -1 -1.36 1.806 2.93  1.561 

rm(ActScoreIM) 
rm(ActScore) 

This analysis shows that, by setting EM to zero and IM (genotype *1/*null) to -1, PM 
(genotype *null/*null) has an approximate score of -2, RM (genotype *1/*17) of 1, and UM 
(genotype *17/*17) of 1.8. The credibility intervals are wide, however; these results are 
broadly consistent with current assumptions on CYP2C19 activity scores. 

Methods to define allelic phenotypes 

Studies varied in the way they defined the phenotypic groups. Old studies used phenotyping 
substrates and only discriminated between PM and EM. The PM determined by 
phenotyping corresponds to the a genotype consisting of homozygous alleles with zero 
CYP2C19 enzyme activity (*null/*null). The IM group consists of one active and one inactive 
allele (*1/*null) of CYP2C19, but in the IM group, the majority of the (older) studies (n=28) 
pooled data from individuals that might have been carriers of the *17 allele, because the 
studies performed before the identification of CYP2C19*17 in the year 2006 did not 
discriminate *17/*null from *1/*null genotypes. One study pooled the PM genotype 
(homozygous *2 carriers) into the IM group (Islam et al. 2022). The RM group is defined as 
genotype *1/*17, some studies did not discriminate between the UM and RM groups and 
pooled possible carriers of the homozygous *17 genotype into one group. The table below 
shows the number of such studies for substrates where we have data for all phenotypic 
groups. 

phgroups <- select(cypx, matches("^(I|R).*\\d$")) %>% sapply(sum) %>% print() 

##   IM_17   IM_22 RM_1717   RM_11  
##      17       1       3       2 

As one can see, the estimation of the IM phenotype might be affected by pooling *17 
homozygous carriers in the IM group. The number of studies with pooling from other 
groups may be too small to be able to estimate the effects of pooling. It turns out that it is 
possible to fit models only to estimate effects of defining the IM and RM phenotypes while 
pooling *17 homozygous carriers in these groups. 

We therefore repeated the analysis with these two confounders. 

covs <- as.matrix(select(cypx, IM_17, RM_1717)) 
dat$Covariates <- covs 
dat$K <- ncol(covs) 
bayesfit <- stan("levels_covs.stan", data = dat, seed = 142, iter = 2000) 
print(bayesfit, par = "covcoefs") 



## Inference for Stan model: anon_model. 
## 4 chains, each with iter=2000; warmup=1000; thin=1;  
## post-warmup draws per chain=1000, total post-warmup draws=4000. 
##  
##              mean se_mean    sd   2.5%   25%   50%   75% 97.5% n_eff Rhat 
## covcoefs[1]  1.68    0.12  8.61 -15.48 -4.16  1.78  7.58 17.97  5025    1 
## covcoefs[2] 38.57    0.17 14.05  10.89 29.11 38.57 48.01 65.66  6881    1 
##  
## Samples were drawn using NUTS(diag_e) at Tue Nov 22 05:29:43 2022. 
## For each parameter, n_eff is a crude measure of effective sample size, 
## and Rhat is the potential scale reduction factor on split chains (at  
## convergence, Rhat=1). 

# display estimates of activity scores computed relative to IM 
cf = select(as.data.frame(bayesfit), matches("phenotypes")) 
ActScoreIM <- cf[,1] * -1 
ActScore <- list() 
ActScore$EM <- 0 
ActScore$IM <- -1  
ActScore$PM <- cf[,2] / ActScoreIM 
ActScore$RM <- cf[,3] / ActScoreIM 
ActScore$UM <- cf[,4] / ActScoreIM 
ActScore$star17 <- (ActScore$RM * 2 + ActScore$UM) / 4 
ActScore <- as.data.frame(ActScore) 
Scores <- sapply(ActScore, median, simplify = "array") 
Scores <- rbind(Scores, sapply(ActScore, quantile,  
                               probs = 0.05, simplify = "array")) 
Scores <- rbind(Scores, sapply(ActScore, quantile,  
                               probs = 0.95, simplify = "array")) 
row.names(Scores) <- c("median", "5% lower", "95% upper") 
print(Scores, digits = 3) 

##           EM IM    PM    RM    UM star17 
## median     0 -1 -1.88 0.663 1.677  0.748 
## 5% lower   0 -1 -3.78 0.208 0.966  0.401 
## 95% upper  0 -1 -1.19 1.608 3.516  1.612 

The outcome of this analysis is that the effects of the phenotype definitions are not 
significant with the exception of the effect of pooling homozygous *17 alleles in to the RM 
group. As one may expect, studies pooling homozygous *17 carriers into the RM group 
overestimate its effects; the large value of this overestimation, 38%, is the difference 
between these studies and those that do not pool (the studies that pool are small and 
average an adjusted dose of 156% while those that do not pool give 115%). However, the 
credibility intervals of this effect are enormous. 

We therefore opted to define activity scores after excluding studies that pooled the *17 
homozygous carriers into the RM group, and verify deviations from linearity by testing a 
different slope for the *17 carriers in the dataset as a whole. In sum, this gives activity 
scores of -2, -1, 0.8, and 1.6 for the PM, IM, RM, and UM phenotypic groups. 



#create a dummy variable for levels of phenotype as factor 
cypx <- filter(cypx, RM_1717 == 0) 
phen <- cypx$StudyID 
phen[cypx$Phenotype == "IM"] <- 1 
phen[cypx$Phenotype == "PM"] <- 2 
phen[cypx$Phenotype == "RM"] <- 3 
phen[cypx$Phenotype == "UM"] <- 4 
 
#create indicator variable for studies included in dataset 
studyID <- cypx$StudyID 
counter = 1 
for (i in 2:nrow(cypx)) { 
  if (cypx$StudyID[i-1] != cypx$StudyID[i])  
    counter <- counter + 1 
  studyID[i] <- counter 
} 
 
#set up variables for stan 
dat <- list( 
  N = nrow(cypx), 
  Q = 4, 
  M = max(studyID), 
   
  Adjustment = cypx$Adjustment, 
  Phenotype = phen, 
  Study = studyID, 
  nobs = cypx$Size 
) 
dat$logsigmaloc <- 4 
dat$logsigmascale <- 0.25 
bayesfit <- stan("levels.stan", data = dat, seed = 142, iter = 2000) 
 
# display estimates of activity scores computed relative to IM 
cf = select(as.data.frame(bayesfit), matches("phenotypes")) 
ActScoreIM <- cf[,1] * -1 
ActScore <- list() 
ActScore$EM <- 0 
ActScore$IM <- -1  
ActScore$PM <- cf[,2] / ActScoreIM 
ActScore$RM <- cf[,3] / ActScoreIM 
ActScore$UM <- cf[,4] / ActScoreIM 
ActScore$star17 <- (ActScore$RM * 2 + ActScore$UM) / 4 
ActScore <- as.data.frame(ActScore) 
Scores <- sapply(ActScore, median, simplify = "array") 
Scores <- rbind(Scores, sapply(ActScore, quantile,  
                               probs = 0.05, simplify = "array")) 
Scores <- rbind(Scores, sapply(ActScore, quantile,  
                               probs = 0.95, simplify = "array")) 
row.names(Scores) <- c("median", "5% lower", "95% upper") 
print(Scores, digits = 3) 



##           EM IM    PM    RM   UM star17 
## median     0 -1 -1.96 0.699 1.75  0.787 
## 5% lower   0 -1 -2.91 0.262 1.13  0.479 
## 95% upper  0 -1 -1.42 1.277 2.76  1.264 

rm(ActScoreIM) 
rm(ActScore) 

Formally testing linearity 

To verify linearity of activity scores we turned to a model of adjustment as a function of 
activity scores. We followed the following strategy: 

• we omitted the constant term, so that the label-relative EM dose is adjusted to itself 
(zero change) 

• we added random effects of activity for substances, but no random effect for the 
intercept, to constrain the effect of activity scores to pass through zero at the EM 
group; 

• we coded the activity scores as -2 (PM), -1 (IM), 0.8 (RM), and 1.6 (UM) following the 
results of the previous section. 

The basic model is 

𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑖 = 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒 + 𝑠𝑡𝑢𝑑𝑦𝑗[𝑖] + 𝜖𝑖 , 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑀 

𝑠𝑡𝑢𝑑𝑦 ∼ 𝑁(0, 𝜎𝑠𝑡𝑢𝑑𝑖𝑒𝑠) 

The residual variance of the 𝜖𝑖 is modelled as before (this model is specified in 
lmact_covs.stan). 

Test for different scores *17 and *null 

Here, we test that the slope of the RM and UM phenotypes differs from the slope of the IM 
and PM phenotypes with the activity scores given above. 

#get rid of EM measurements and keep only putative substrates 
cypsel <- filter(cyp, Phenotype != "EM" & Selection == TRUE & Status == "OK") 
 
#define a different slope for *17 carriers 
covs <- as.matrix(cypsel %>%  
    transmute(star17 = Activity * (Phenotype == "RM" | Phenotype == "UM"))) 
 
#create indicator variable for studies included in dataset 
studyID <- cypsel$StudyID 
counter = 1 
for (i in 2:nrow(cypsel)) { 
  if (cypsel$StudyID[i-1] != cypsel$StudyID[i])  
    counter <- counter + 1 
  studyID[i] <- counter 
} 
 
#set up variables for stan 



dat <- list( 
  N = nrow(cypsel), 
  K = ncol(covs), 
  M = max(studyID), 
   
  Adjustment = cypsel$Adjustment, 
  Activity = cypsel$Activity, 
  Covariates = covs, 
  Study = studyID, 
  nobs = cypsel$Size 
) 
dat$logsigmaloc <- 4 
dat$logsigmascale <- 0.25 
star17fit <- stan("lmact_covs.stan", data = dat, seed = 142, iter = 2000) 
print(star17fit, par = "covcoefs") 

## Inference for Stan model: anon_model. 
## 4 chains, each with iter=2000; warmup=1000; thin=1;  
## post-warmup draws per chain=1000, total post-warmup draws=4000. 
##  
##             mean se_mean  sd  2.5%  25%  50%  75% 97.5% n_eff Rhat 
## covcoefs[1] 5.04    0.06 4.1 -3.04 2.28 5.08 7.79 13.03  4378    1 
##  
## Samples were drawn using NUTS(diag_e) at Tue Nov 22 05:30:28 2022. 
## For each parameter, n_eff is a crude measure of effective sample size, 
## and Rhat is the potential scale reduction factor on split chains (at  
## convergence, Rhat=1). 

The minor difference in the slope of activity (given by covcoefs[1]) is now too small to be 
detectable in this model. 

Nonlinearity 

We now evaluate these scores by fitting a model with quadratic and cubic terms, to test for 
deviations from non-linearity. First, the model with cubic effects: 

#get rid of EM measurements and keep only putative substrates 
cypsel <- filter(cyp, Phenotype != "EM" & Selection == TRUE & Status == "OK") 
 
#define quandratic and cubic effects, and add homozygous *17 in RM as 
confounder 
covs <- as.matrix(cypsel %>% transmute(quadratic = Activity^2, 
cubic=Activity^3,  
                                       RM_1717 = RM_1717)) 
 
#create indicator variable for studies included in dataset 
studyID <- cypsel$StudyID 
counter = 1 
for (i in 2:nrow(cypsel)) { 
  if (cypsel$StudyID[i-1] != cypsel$StudyID[i])  
    counter <- counter + 1 
  studyID[i] <- counter 



} 
 
#set up variables for stan 
dat <- list( 
  N = nrow(cypsel), 
  K = ncol(covs), 
  M = max(studyID), 
   
  Adjustment = cypsel$Adjustment, 
  Activity = cypsel$Activity, 
  Covariates = covs, 
  Study = studyID, 
  nobs = cypsel$Size 
) 
dat$logsigmaloc <- 4 
dat$logsigmascale <- 0.25 
nonlin3 <- stan("lmact_covs.stan", data = dat, seed = 142, iter = 2000) 
print(nonlin3, par = "covcoefs") 

## Inference for Stan model: anon_model. 
## 4 chains, each with iter=2000; warmup=1000; thin=1;  
## post-warmup draws per chain=1000, total post-warmup draws=4000. 
##  
##              mean se_mean    sd  2.5%   25%   50%   75% 97.5% n_eff Rhat 
## covcoefs[1]  1.50    0.03  1.47 -1.34  0.48  1.49  2.51  4.33  3405    1 
## covcoefs[2]  1.40    0.03  1.41 -1.32  0.46  1.38  2.33  4.26  2420    1 
## covcoefs[3] 27.65    0.16 10.84  6.19 20.48 27.70 34.83 49.28  4685    1 
##  
## Samples were drawn using NUTS(diag_e) at Tue Nov 22 05:30:53 2022. 
## For each parameter, n_eff is a crude measure of effective sample size, 
## and Rhat is the potential scale reduction factor on split chains (at  
## convergence, Rhat=1). 

The cubic effect is covcoefs[2] (in this analysis, we also adjust for pooling homozygous *17 
in the RM group, which gives covcoefs[3]). Now the quadratic effects: 

#define quandratic and cubic effects, and add homozygous *17 in RM as 
confounder 
covs <- as.matrix(cypsel %>%  
                transmute(quadratic = Activity^2, RM_1717 = RM_1717)) 
 
#create indicator variable for studies included in dataset 
studyID <- cypsel$StudyID 
counter = 1 
for (i in 2:nrow(cypsel)) { 
  if (cypsel$StudyID[i-1] != cypsel$StudyID[i])  
    counter <- counter + 1 
  studyID[i] <- counter 
} 
 
#set up variables for stan 



dat <- list( 
  N = nrow(cypsel), 
  K = ncol(covs), 
  M = max(studyID), 
   
  Adjustment = cypsel$Adjustment, 
  Activity = cypsel$Activity, 
  Covariates = covs, 
  Study = studyID, 
  nobs = cypsel$Size 
) 
dat$logsigmaloc <- 4 
dat$logsigmascale <- 0.25 
nonlin2 <- stan("lmact_covs.stan", data = dat, seed = 142, iter = 2000) 
print(nonlin2, par = "covcoefs") 

## Inference for Stan model: anon_model. 
## 4 chains, each with iter=2000; warmup=1000; thin=1;  
## post-warmup draws per chain=1000, total post-warmup draws=4000. 
##  
##              mean se_mean    sd  2.5%   25%   50%   75% 97.5% n_eff Rhat 
## covcoefs[1]  0.61    0.02  1.18 -1.77 -0.17  0.61  1.39  2.89  5248    1 
## covcoefs[2] 26.08    0.13 10.71  4.98 18.93 26.05 33.38 47.13  7012    1 
##  
## Samples were drawn using NUTS(diag_e) at Tue Nov 22 05:31:18 2022. 
## For each parameter, n_eff is a crude measure of effective sample size, 
## and Rhat is the potential scale reduction factor on split chains (at  
## convergence, Rhat=1). 

The quadratic effect is covcoefs[1] (covcoefs[2] is again the pooling of the homozygous *17 
within the RM group). None of these nonlinear terms are significant. We therefore accept 
the activity scores we defined above. 

Here is the boxplot of the data, this time with the new activity score and the polynomial fit. 



 

Adjustments phenotypic groups with activity scores 

As one can see, the polynomial predictor gives now a linear fit, showing the non-linear 
terms to be redundant. 

Log transformation 

When considering a log-transformation of the adjustments, we obtain an effect that is no 
longer linear for equally spaced activity scores. The plot below reports both the linear (in 
black) and cubic polynomial fit, showing the latter to deviate from the linear fit. 



 

Fitted line: black: original data, color: log-transformed data 

This plots shows that the log transform would not be appropriate in this dataset. 

Effects of studies 

Coding EMs by pooling oher phenotypes 

In some studies, the EM allelic group was defined while pooling within it other alleles, the 
*2 or the *17: 

phgroups <- filter(studies, Status == "OK") %>%  
  select(matches("^EM.*\\d$")) %>% sapply(sum) %>% print() 

## EM_17  EM_2  
##    32     9 

This pooling affects all other phenotypic groups, because the EM estimate is the reference 
point in the original studies, affecting all other phenotypes at once. We therefore 
investigated the effects of EM pooling on the estimated effects of activity scores (not on the 
estimates of individual phenotypic groups as in a previous section. In this analysis, we also 
adjust for pooling homozygous *17 in the RM group). 

#get rid of EM measurements and keep only putative substrates 
cypsel <- filter(cyp, Phenotype != "EM" & Selection == TRUE & Status == "OK") 
 
#EM_2 not estimable, too few data 
covs <- as.matrix(select(cypsel, EM_17xAct2, EM_17xAct17, EM_2xAct2, 



RM_1717)) 
 
#create indicator variable for studies included in dataset 
studyID <- cypsel$StudyID 
counter = 1 
for (i in 2:nrow(cypsel)) { 
  if (cypsel$StudyID[i-1] != cypsel$StudyID[i])  
    counter <- counter + 1 
  studyID[i] <- counter 
} 
 
#set up variables for stan 
dat <- list( 
  N = nrow(cypsel), 
  K = ncol(covs), 
  M = max(studyID), 
   
  Adjustment = cypsel$Adjustment, 
  Activity = cypsel$Activity, 
  Covariates = covs, 
  Study = studyID, 
  nobs = cypsel$Size 
) 
dat$logsigmaloc <- 4 
dat$logsigmascale <- 0.25 
EMfit <- stan("lmact_covs.stan", data = dat, seed = 142, iter = 2000) 
 
print(EMfit, par = c("covcoefs", "sigma_within", "sigma_betw")) 

## Inference for Stan model: anon_model. 
## 4 chains, each with iter=2000; warmup=1000; thin=1;  
## post-warmup draws per chain=1000, total post-warmup draws=4000. 
##  
##                mean se_mean    sd   2.5%    25%    50%    75% 97.5% n_eff 
Rhat 
## covcoefs[1]   -5.26    0.05  3.25 -11.55  -7.45  -5.23  -3.11  1.04  4367    
1 
## covcoefs[2]  -16.31    0.11  8.47 -33.24 -21.82 -16.15 -10.87  0.96  6265    
1 
## covcoefs[3]   -0.96    0.06  4.71 -10.19  -4.13  -0.99   2.25  8.41  5857    
1 
## covcoefs[4]   23.42    0.13 10.34   3.10  16.56  23.26  30.12 44.42  6365    
1 
## sigma_within  35.25    0.08  5.93  24.71  31.04  34.95  39.05 47.59  5685    
1 
## sigma_betw    17.05    0.03  1.96  13.52  15.69  16.93  18.30 21.16  5701    
1 
##  
## Samples were drawn using NUTS(diag_e) at Tue Nov 22 05:31:43 2022. 
## For each parameter, n_eff is a crude measure of effective sample size, 



## and Rhat is the potential scale reduction factor on split chains (at  
## convergence, Rhat=1). 

Pooling heterozygous *2 in the EM group (which happened in the old phenotyping studies 
that pooled all genotypes other than *null/*null into one group of EM) appears to have no 
effect on estimate of activity scores. Instead, the pooling of *17 carriers in the EM group 
(=*1/*17 or *17/*17), which happened in the older studies that genotyped for the *null 
alleles but not for *17 alleles, leads to smaller effects of activity scores on adjustments in the 
UM phenotype. However, these effects fail to reach significance. 

Pharmacokinetic parameters 

We also tested parameters of the study design that might affect the estimation of the 
CYP2C19 phenotype from pharmacokinetic data. One parameter consisted of the 
pharmacokinetic measurement used to estimate the dose adjustments. Some studies 
(usually performed in healthy participants as pharmacokinetic study) used AUC or 
Clearance, other studies (usually in patients and at naturalistic conditions) used Css, the 
dose corrected plasma concentration at steady state. We therefore tested the influence of 
the pharmacokinetic parameter given in the studies and the participants (healthy versus 
patients). 

 

This plot suggests a slight effect of these parameters on the slope. Css appears to 
overestimate the allelic effect relative to both Auc and Cl. 

We repeat the fit with a Bayesian model to weight the observations by the estimated 
components of the residuals. 



#get rid of EM measurements and keep only putative substrates 
cypsel <- filter(cyp, Phenotype != "EM" & Selection == TRUE & Status == "OK") 
 
#covariates 
covs <- as.matrix(cypsel %>%  
          mutate(Auc = Activity * (Parameter == "Auc"),  
                 Cl = Activity * (Parameter == "Cl")) %>%  
            select(RM_1717, Auc, Cl)) 
 
#create indicator variable for studies included in dataset 
studyID <- cypsel$StudyID 
counter = 1 
for (i in 2:nrow(cypsel)) { 
  if (cypsel$StudyID[i-1] != cypsel$StudyID[i])  
    counter <- counter + 1 
  studyID[i] <- counter 
} 
 
#set up data for stan 
dat <- list( 
  N = nrow(cypsel), 
  K = ncol(covs), 
  M = max(studyID), 
   
  Adjustment = cypsel$Adjustment, 
  Activity = cypsel$Activity, 
  Covariates = covs, 
  Study = studyID, 
  nobs = cypsel$Size 
) 
dat$logsigmaloc <- 4 
dat$logsigmascale <- 0.25 
paramfit <- stan("lmact_covs.stan", data = dat, seed = 142, iter = 2000) 
print(paramfit, par = "covcoefs") 

## Inference for Stan model: anon_model. 
## 4 chains, each with iter=2000; warmup=1000; thin=1;  
## post-warmup draws per chain=1000, total post-warmup draws=4000. 
##  
##              mean se_mean    sd   2.5%    25%   50%   75% 97.5% n_eff Rhat 
## covcoefs[1] 26.41    0.14 10.59   5.86  19.33 26.34 33.39 47.46  5493    1 
## covcoefs[2] -8.07    0.06  4.46 -16.65 -11.04 -8.04 -5.15  0.89  5669    1 
## covcoefs[3] -4.38    0.05  3.74 -11.87  -6.86 -4.40 -1.92  2.93  5945    1 
##  
## Samples were drawn using NUTS(diag_e) at Tue Nov 22 05:32:09 2022. 
## For each parameter, n_eff is a crude measure of effective sample size, 
## and Rhat is the potential scale reduction factor on split chains (at  
## convergence, Rhat=1). 



(In the printout, covcoefs[1] is the effect of RM pooling, covcoefs[2] of Auc relative to Css 
and covcoefs[3] of Cl). The model shows the slope of Css to be larger than in the other 
methods by 6-8%. This is a relatively small effect, and indeed it fails to reach significance. 

We decided against including this parameter in the final model not only because it is small, 
but also because this estimate may be biased by the confounder given by previous 
knowledge that the CYP2C19 effect is present and large. This may have been an incentive to 
conduct large studies in clinical samples. 

Single/multiple studies (dosage) 

Pharmacokinetic parameters were determined in some studies with single and in some 
studies with multiple doses. This variable is almost the same as studies conducted on 
patients or healthy volunteers, which cannot be studies separately. 

It would not be expected for single and multiple dose methods to influence the magnitude 
of the CYP2C19 pathway coefficient, but its precision. Hence, we modified the model and 
tested a heteroscedastic variance within studies depending on study type, single or multiple 
dose. The model for the residual errors replaces the variance within 𝜎𝑤

2  with 𝜎𝑘
2, 

𝜖𝑖 ∼ 𝑁(0, 𝜎𝑘
2/𝑛𝑖 + 𝜎𝑏

2), 𝑘 = 1,2 

where 𝑘 indexes single and multiple dose, and 𝑖 indexes the datapoints as before, 𝑖 =
1,2, … ,𝑁. We keep the adjustment fo RM pooling in the model. 

#get rid of EM measurements and keep only putative substrates 
cypsel <- filter(cyp, Phenotype != "EM" & Selection == TRUE & Status == "OK") 
 
#covariates 
covs <- as.matrix(cypsel %>% mutate(Auc = Activity * (Parameter == "Auc")) 
%>%  
                    select(RM_1717)) 
 
#create indicator variable for studies included in dataset 
studyID <- cypsel$StudyID 
counter = 1 
for (i in 2:nrow(cypsel)) { 
  if (cypsel$StudyID[i-1] != cypsel$StudyID[i])  
    counter <- counter + 1 
  studyID[i] <- counter 
} 
 
#set up data for stan 
dat <- list( 
  N = nrow(cypsel), 
  K = ncol(covs), 
  M = max(studyID), 
   
  Adjustment = cypsel$Adjustment, 
  Activity = cypsel$Activity, 
  Covariates = covs, 



  Study = studyID, 
  nobs = cypsel$Size, 
  sigmaidx = as.integer(cypsel$Dosage == "SD") + 1 
) 
dat$logsigmaloc <- 4 
dat$logsigmascale <- 0.25 
sdfit <- stan("lmact_covs_wghtex.stan", data = dat, seed = 142, iter = 2000) 
print(sdfit, par = c("covcoefs", "sigma_within", "sigma_betw")) 

## Inference for Stan model: anon_model. 
## 4 chains, each with iter=2000; warmup=1000; thin=1;  
## post-warmup draws per chain=1000, total post-warmup draws=4000. 
##  
##                  mean se_mean    sd  2.5%   25%   50%   75% 97.5% n_eff 
Rhat 
## covcoefs[1]     25.11    0.13 10.37  5.14 17.92 25.19 32.10 45.11  6787    
1 
## sigma_within[1] 44.30    0.11  8.22 29.29 38.39 44.02 49.71 61.28  5539    
1 
## sigma_within[2] 36.86    0.09  7.38 24.43 31.63 36.22 41.25 52.89  6118    
1 
## sigma_betw      16.79    0.03  2.04 12.97 15.37 16.76 18.14 20.89  5022    
1 
##  
## Samples were drawn using NUTS(diag_e) at Tue Nov 22 05:35:20 2022. 
## For each parameter, n_eff is a crude measure of effective sample size, 
## and Rhat is the potential scale reduction factor on split chains (at  
## convergence, Rhat=1). 

As expected, there was smaller variability in the studies with single dose (sigma_within[2]) 
than in those with multiple dose (sigma_within[1]). However, the credibility intervals 
largely overlapped. Importantly, studies with single dose are more expensive; only small 
studies are available with single dose. 

It is worth noting that there was an association between single/multiple dose and the the 
pharmacokinetic method: 

##      
##      Auc Cl Css 
##   MD   1  6  71 
##   SD  13 12   0 

Hence, the heteroscedastic model of this section also considers modelling effects of 
parameters on variance rather than mean activity scores. 

Conclusion 

In conclusion, we should add in the model the effects of pooling both *17 alleles in the RM 
group. The effects of *17 carriers in the EM or IM groups and of AUC/single or multiple 
studies are so small they may be neglected. As shown in the figures below, residuals are 
larger in the PM and UM group, but this may be expected given that the sample sizes are 



smaller (this aspect is already taken care of by the model of the residuals). Note also the 
symmetry of the residuals, confirming that a log transformation of adjustments is not 
necessary. The random effect of studies shows here reasonable homogeneity. 

 

hist(as.data.frame(sdfit) %>% select(matches("^studies")) %>%  
       map_df(median) %>% as.matrix(),  
     xlab = "studies", main = "Random effect of studies",  
     breaks = 8) 



 

 

estimates and confidence intervals, residual dispersion 

disp <- as.data.frame(sdfit) %>% select(matches("dispersion")) %>% 
map_dbl(median) %>% as.matrix() 



plot(disp + runif(nrow(cypsel)) ~ log(cypsel$Size), pch = "o", col = 
ifelse(cypsel$Dosage == "SD", "blue", "red")) 

 

In blue, estimated within datapoint standard deviation of single dose studies, in red, the 
multiple dose studies, plotted as a function of datapoint sample size. Jitter was added to 
identify samples. 


