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S1. Curcumin quantification 

 
Figure S1. Standard curves of curcumin dissolved in methanol. Curves were made different days. 

S2. Curcumin chemical structure 

 
Figure S2. Chemical structure and tautomerical forms of Curcumin [40]. 

S3. Curcumin suspensions 

 
Figure S3. 200 µg/mL Cur suspensions in (a) methanol, (b) Tris buffer NaCl pH 7.4, (c) nATC 356 
and (d) nLTC. 
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S4. SAXS model 
SAXS intensity were analyzed according to the following equation 𝐼(𝑞)  =  𝑆 [𝑤 ⋅ 𝑃 + (1 − 𝑤)𝑃 ] + 𝑏𝑎𝑐𝑘(𝑞) (S1)

Where the scattered intensity “I(q)” with the weighted contribution of the scattering 
curve of the uni (Ps) and multilamellar structures (Pm) [31], respectively, and the back-
ground function is determined by: 𝑏𝑎𝑐𝑘(𝑞)  =  𝑘 + 𝑘𝑞  (S2)

Here, 𝑆  and 𝑘 , 𝑘  and𝑤 are escalar and 𝛼 is an exponential law for low angles 
contribution. The form factors for the uni and multilamellar contributions are described 
in the equation S3 𝑃 = 2𝜋𝑞 𝑃 (𝑞); 𝑃 = 2𝜋𝑞 𝑃 (𝑞)𝑆(𝑞) (S3)

Where 𝑃 (𝑞) is the infinite form factor of a bilayer structure composed by the polar 
head and the hydrophobic tail of the surfactant. The form factor is modelled in the follow-
ing equation 𝑃   4𝑞 {𝛥𝜌 𝑠𝑖𝑛(𝑞𝑅 ) + 𝛥𝜌 {𝑠𝑖𝑛(𝑞[𝑅 + 𝑅 ]) − 𝑠𝑖𝑛(𝑞𝑅 )}  + 𝛥𝜌 {𝑠𝑖𝑛(𝑞[𝑅 + 𝑅 + 𝑅 ]) − 𝑠𝑖𝑛(𝑞[𝑅 + 𝑅 ])}}  

(S4)

where ΔρCH3 = ρCH3−ρsolution; Δρheadl = ρhead−ρsolution and Δρ–CH2– = ρ–CH2–−ρsolution. The lipid 
bilayer thickness in this model is 2(Rhead + R–CH2–+ RCH3). During the fitting procedure, some 
of these parameters were allowed to vary within a narrow range: RCH3 (1.5 Å < RCH3 < 3.5 
Å), ρCH3 (0.15 e/Å3 < ρCH3 < 0.20 e/Å3) and ρ–CH2– (0.25 e/Å3 < ρ–CH2– < 0.30 e/Å3), in accordance 
with data from the literature [31,33,34]. The other Pinf(q) parameters could vary in a corre-
sponding broader range. For the multilamellar vesicles (MLV) the Modified Caillé Theory 
(MCT)[31,32] was used to calculate S(q) in equation S3. This model considers the bending 
of the membrane and the fluctuations in the space between bilayers by a statistical ap-
proach. For that, a disorder parameter is added 𝜂𝐶𝑎𝑖𝑙𝑙é to the equation, that can be written 
as [33,34]: 

𝑆(𝑞) =  𝑁 + 2 (𝑁 − 𝑛)𝑐𝑜𝑠(𝑛𝑞𝑑)𝑒𝑥𝑝(−0.5772𝜂 𝑥)(𝜋𝑛)   (S5)

Where 𝑥 = (𝑞𝑑/2𝜋) . Here N is the number of the stacked bilayers, d is the repetition 
distance. Finally, the parameter w does not represent the real proportion between uni and 
multilamellar structures. Thus, the invariant Q [34] is employed instead (equation S6) 
where ꭓs(%) is the percentage of unilamellar structures in the system. 

𝜒 (%)  = 100 ⋅  𝑤 𝑞 𝑃 (𝑞)𝑑𝑞𝑞 (𝑤𝑃 (𝑞) + [1 − 𝑤]𝑃 (𝑞))𝑑𝑞 (S6)

Models were implemented in Python 3.8 scripting using the LMfit library [35] for 
non-linear least square procedures. 

Table S1. SAXS’ model parameters obtained from nonlinear least squares procedure. 

Sample AT ATC LT LTC 

w 1 1 0.87 ± 0.02 0.958 ± 0.002 

ꭕs (%) 100 100 32 ± 1 13 ± 1 
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RCH3 (nm) 0.150 ± 0.003 0.150 ± 0.001 0.150 ± 0.001 0.153± 0.001 

R-CH2- (nm) 0.79 ± 0.09 0.79 ± 0.09 1.05 ± 0.01 1.03 ± 0.08 

Rhead (nm) 1.75 ± 0.06 0.170 ± 0.06 1.93 ± 0.05 1.86 ± 0.09 

Thickness (nm) 5.3 ± 0.1 5.3 ± 0.1 6.3 ± 0.1 6.1 ± 0.1 ⍴head (e/Å3) 0.42 ± 0.01 0.41 ± 0.01 0.40 ± 0.01 0.40 ± 0.02 ⍴-CH2-(e/Å3) 0.23 ± 0.01 0.25 ± 0.02 0.25 ± 0.01 0.25 ± 0.03 ⍴CH3(e/Å3) 0.17 ± 0.01 0.20 ± 0.01 0.15 ± 0.01 0.15 ± 0.01 

N -- -- 2.19 ± 0.06 6.35 ± 0.05 

d (nm) -- -- 10. 75 ± 0.04 10.77 ± 0.01 

ηCaille -- -- 0.009± 0.001 0.009 ± 0.001 

S5. Nanovesicles stability upon storage  

 
Figure S4. Stability upon storage by 1, 2 and 6 months at 4 °C of nATC and nLTC. 

S6. Nanovesicles stability upon nebulization  

 
Figure S5. Changes in mean size during nebulization of a) nATC fresh, c) nLTC fresh or after 6 
months incubation b) nATC and d) nLTC. 
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S7. Cytotoxicity of CUR-nanovesicles 

 
Figure S6. LDH release after 24 h incubation of free CUR and CUR loaded nanovesicules on THP-
1 cells 1) CUR 20 µg/mL – total lipids 1.4 mg/mL, 2) CUR 10 µg/mL – total lipids 0.7 mg/mL, 3) 
CUR 5 µg/mL – total lipids 0.35 mg/mL. 
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