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Methods and materials  

 

Quantification of phenolic constituents 

We employed a previously described methodology [1] to quantify fifteen major phenolic constituents commonly found 

in rooibos tea. Briefly, tea samples were extracted with 50% MeOH and 1% formic acid (FA). A Waters Synapt G2 

Quadrupole time-of-flight (q-TOF) mass spectrometer (MS) connected to a Waters Acquity ultra-performance liquid 

chromatograph (UPLC) was used for high-resolution UPLC-MS analysis (CAF, Stellenbosch University). 

Chromatographic separation was achieved on a Waters HSS T3 column (1.7 μm, 2.1 × 100 mm), and the column 

temperature was maintained at 55 °C. For all samples an injection volume of 2 μL was used and run using a binary 

mobile phase gradient which consisted of (A) 0.1% FA in H2O and (B) 0.1% FA in Acetonitrile. The flow rate was set 

to 0.3 mL/min throughout the set 29 min run time with the following separation conditions: the gradient started at 0% 

solvent B for 1 min and increased to 28% B over 22 mins in a linear way. It was then increased to 40% solvent B until 
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22.5 min, followed by an increase to 100% solvent B until 23 min. Solvent B was held at 100% until 24.5 min, before 

being reduced to 0% solvent B to re-equilibrate to initial conditions for the final 4.5 min. Electrospray ionization was 

used in negative mode with a cone voltage of 15 V. Constituents were identified according to their accurate mass, 

MS/MS fragments, UV maxima and retention times as previously described [1] and quantified relative to rutin reference 

standards.  

 

Choice of rooibos formulation 

The decision to utilise a single rooibos preparation in this study (i.e. GRE) was manifold. Firstly, it is well-known that 

various factors influence the polyphenolic content, and subsequent antioxidant capacity, of rooibos. Some of these 

factors include geographical variety variations [1], season and quality grade [2], processing [3] and tea preparation i.e. 

brewing method [4]. As mentioned in the introduction, we have previously characterised 15 major polyphenolic 

constituents in green rooibos (GR), fermented rooibos and GRE (used in this study). Secondly, from these results 

(Supplementary Figure 1) we observed that the process of ethanol extraction concentrated constituents with well 

documented antioxidant activities. Indeed, orientin [5-7], iso-orientin [8-10], luteolin-7-O-glucoside [11-13], quercetin-

3-O-robinobioside [14-16], and vicenin-2 [17-19] were all present in higher levels in GRE compared to the original GR 

stock, and have well-documented anti-oxidant activities. Thirdly, the specific antioxidant activity of GRE utilised here 

has previously been determined [20], which could be linked to outcome measures in this study. Fourthly, GRE also had 

higher phenylpropenoic acid glucoside (PPAG) levels than GR stock, and has been reported to confer protection 

downstream of oxidative stress induction [21], presumably via anti-apoptotic mechanisms [22]. Taken together, we 

suggest that there is scope for specific rooibos constituent compounding (selected bioactive compound combinations 

and distributions) to promote synergistic actions to obtain optimal therapeutic benefit. As such, we selected to utilise 

GRE in this study, as it represented the rooibos formulation with the most abundant distribution of a wide variety of 

polyphenolic constituents with known antioxidant and anti-apoptotic activities. 

 

Choice of rooibos dose 

Due to the substantial polyphenolic content [1,23] and documented antioxidant activity of GRE [20,24], it was important 

to establish a feasible dose to investigate in cell culture. Previous work executed on GRE by our group utilized a final 

experimental concentration of 100 μg/mL in vitro, which was determined to equate to an 8-fold concentration of rooibos 
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tea in terms of polyphenol content [20]. To determine the optimal dose of GRE for this current study, HT-29 cell viability 

was assessed in response to a range of GRE (0 to 1000 μg/mL). For this purpose, a WST-1 assay was used to assess the 

activity of mitochondrial enzymes (succinate-tetrazolium reductase system) in treated cells. Briefly, HT-29 cells were 

seeded in a 96-well microtiter plate with 4x104 cells/well in phenol free media RMPI (Gibco, 11835-030) and were 

incubated at 37°C in 5% CO2 after treatments. After a 24 hr incubation, 5 μL of WST-1 reagent (Abcam, ab155902) 

was added to each well and left to incubate for 90 min before the absorbance of each well was read on a plate reader 

(BIO-TEK, EL800) at 450 nm. Data were collected utilizing the KC Junior Software before exporting to Microsoft 

Excel for further analysis.  
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Results 
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Supplementary Figure S1: Changes in the relative distribution (% of total) of fifteen major phenolic constituents due to differential 

rooibos processing: (A) green rooibos ethanol extract (GRE), (B) green rooibos, and (C) fermented rooibos. Abbreviations: PPAG: 
phenylpropenoic acid glucoside. 

 

 
 

Supplementary Figure S2: WST-1 results showing the effect of varying green rooibos extract (GRE) doses on HT-29 colon cell 
viability. Data are represented as mean % of control ± SD, n=3. Statistical analysis: One-way ANOVA with Tukey’s multiple 
comparison test, *** = p<0.001, **** = p<0.0001. 

 

Results from the WST-1 assay suggested that 100 ug/mL of GRE had a beneficial effect on HT-29 cell viability 

(p<0.001), and as such was selected as the dose that was utilised in subsequent experimentation. Furthermore, these 

results suggest that an over-dose of GRE (>200 μg/mL), as with all antioxidants [25], can have detrimental effects on 

cell mitochondrial functionality and survival. 
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