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1.β-. lactam antibiotics: mechanisms of action and resistance 

β-lactam antibiotics are one of the oldest and widest classes of antibiotics character-

ized by the presence of a beta-lactam ring in their molecular structure [1]. All beta-lactam 

antibiotics such as penicillin, cephalosporin, and carbapenem are bactericidal and act by 

inhibiting the synthesis of bacterial peptidoglycan cell walls [2]. These antibiotics act on 

enzymes called penicillin-binding proteins (PBPs) involved in the cross-linking of the bac-

terial cell walls. Specifically, the beta lactam ring portion of these antibiotics binds irre-

versibly to PBPs by inhibiting the crosslinking of peptidoglycan thus triggering the death 

of the bacteria by autolysis [3]. The basic structure of the penicillins is 6- aminopenicillanic 

acid (6-APA), otherwise known as the β-lactam ring nucleus, that in penicillins, cephalo-

sporins and carbapenems, is fused to another 5- or 6- member ring, whereas in monobac-

tams, the β-lactam ring is monocyclic [4]. The positions 1, 2, 3, or 4 of the β-lactam ring 

have been evaluated for the introduction of numerous and different substituent groups in 

order to improve the biological activity of penicillins (e.g., the methicillin was the first 

semisynthetic penicillin able to resist hydrolysis by the penicillinase that was approved 

for clinical use in the United States in 1960) [4,5]. Moreover, the carbenicillin, a semi-syn-

thetic compound effective against P. aeruginosa, with a carboxyl group in place of amino 

group of ampicillin, was introduced in 1967 [6]. Ampicillin and amoxicillin are aminopeni-

cillins antibiotics of the penicillin family active against gram-positive and some gram neg-

ative bacteria. The amine group increases the rate of entry into the Gram-negative bacteria 

and stability togastric juices [7]. To broaden their antibacterial spectrum of activity, ampi-

cillin and amoxicillin are often given in combination with beta-lactamase inhibitors, sulb-

actam and clavulanic acid, respectively [8]. Beta-lactam antibiotics do not have the same 

efficacy against all types of bacteria and this depends mainly on the structural character-

istics that some bacterial species possess that hinder the activity of these antibiotics (for 

example, the outer membrane of Gram-negative bacteria does not favor the interaction of 

these antibiotics with the PBPs) [9,10]. An important broad-spectrum group of antibiotics 

closely related to the penicillins are the cephalosporins originally derived from the mold 

Acremonium (previously known as "Cephalosporium"). Cephalosporin C (CPC) produced 

by Acremonium chrysogenum is one of the most important antimicrobials for treatment of 

bacterial infections [11]. This compound generated an entirely new family of β-lactam an-

tibiotics because instead of 6-APA, it possesses a nucleus of 7-aminocephalosporinic acid. 

Using 7-ACA as generations of cephalosporins with potent broad-spectrum activity have 

been synthesized [12]. Semi-synthetic cephalosporins are produced by modifying the side 

chains linked to the nucleus and are commonly grouped into fifth generations based on 

their antimicrobial properties [12]. The main difference between the five different genera-

tions lies in different ways of administration and the higher activity against Gram-nega-

tive bacteria of one generation compared to the previous one. Of particular note, the 

fourth-generation cephalosporins are more effective against Gram-negative bacteria com-

pared to the first-generation cephalosporins and the broad-spectrum activity of fifth gen-

eration cephalosporins against Gram-positive bacteria, MRSA and penicillin-resistant 

pneumococci [13].  

Carbapenems are often used as “last-line agents” to treat 51 infections due to resistant 

bacteria [14]. They have a penicillin-like five-membered ring but it differs from that of 

penicillin in that it is unsaturated and contains a carbon atom rather instead of sulfur [15]. 

The structural similarity of the carbapenems to the terminal amino acid residues of the 

peptidoglycan (acylated D-alanyl-D-alanine) allows carbapenems to bind irreversibly to 

the active site of the PBPs, leading to the inhibition of transpeptidation that in turn dis-

rupts the cell wall synthesis [16]. 



 

The first naturally discovered carbapenem was the thienamycin, a derivative pro-

duced by Streptomyces cattleya [14]. The unique chemical structure of carbapenems makes 

them resistant to the action of the majority of β-lactamases, including extended spectrum 

β-lactamases (ESBLs). However, because of its instability in water the thienamycin in clin-

ical therapy is used as N-formimidoyl thienamycin, a semisynthetic derivative known as 

imipenem [17,18]. Imipenem is co-administered with cilastatin, which has the dual func-

tion of inhibiting dehydropeptidase I, a renal enzyme that can degrade the imipenem and 

protecting against imipenem-induced nephrotoxicity. [19,20]. 

Carbapenems such as imipenem/cilastatin, meropenem, doripenem and ertapenem 

are the latest developed β-lactams possessing a broad spectrum of activity and are usually 

reserved for treating infections caused by multidrug resistant (MDR) pathogens [15,21]. 

However, ertapenem effectiveness against non-fermentative rod-shaped bacteria like 

Pseudomonas aeruginosa is relatively limited when compared with meropenem or 

imipenem [22]. Imipenem/cilastatin is effective for the treatment of a wide variety of bac-

terial infections, including complicated urinary tract infections, lower respiratory tract in-

fections and, most importantly, for the treatment of infections caused by cephalosporin-

resistant nosocomial bacteria [15,23]. 

Three major mechanisms are involved in the resistance to carbapenems: porin loss, 

efflux pumps and acquisition of carbapenemase genes [15,24]. Since the porins control the 

passive diffusion of antibiotics across the outer membrane (OM), the deficiency of porin 

expression results in a decreased absorption of antibiotics (i.e. a reduced expression of 

ompk35 and ompk36, two trimeric porins of Klebsiella pneumoniae, results in increased re-

sistance of strains that harboring these mutations to ertapenem) [25,26]. 

Overproduction of efflux pumps is an efficient mechanism for the carbapenem re-

sistance since these pumps can expel outside the cells many different antimicrobial agents 

[27]. Carbapenem resistance in P. aeruginosa is either mediated via a combination of efflux 

pumps, AmpC overexpression and porin loss [28]. The over production of several efflux 

pumps is considered to play an important role in low-level resistance to various car-

bapenems in A. baumannii [29]. The third mechanism dealing with carbapenem resistance 

arises from the acquisition of carbapenemase encoding genes capable of hydrolyzing car-

bapenems and other β-lactam antimicrobials [30]. Since these enzymes are encoded by 

genes carried on transposable elements or plasmids can be horizontally transferred to 

other bacterial species, making this resistance mechanism the greatest threat [31]. Car-

bapenemases are β-lactamases that based on their molecular structure belong to Ambler 

molecular classes A, B, C, and D. Classes A, C, and D inactivate the β-lactams through the 

catalytic activity of serine-residue, whereas class B or MBLs need zinc cation for their ac-

tion [22,32]. 

β-lactamases have been also classified based on the functional classification of Bush-

Jacobi-Medeiros into groups 1 to 3 depending on the degradation of β-lactam substrates 

and the effects of inhibitors [32,33]. Ambler Classes A and D are known as serine β-lac-

tamases (SBLs) and utilize serine for β-lactam hydrolysis [34]. Ambler Class B are known 

as metallo-β-lactamases (MBLs), since require divalent zinc ions for substrate hydrolysis 

[32,34]. Clavulanic acid, sulbactam and/or tazobactam, known β-lactamase inhibitors, can 

inhibit SBLs but are MBLs ineffective [35]. The latter may be inhibited by metal ion chela-

tors, such as dipicolinic acid or EDTA that however are not approved for clinical use [36]. 

Class A β-lactamases include: Principal component 1 (PC1), a common source of pen-

icillin resistance in S. aureus [37]; TEM, the designation TEM refers to Temoneira, a Greek 

patient from whom was isolated an E. coli carrying the TEM-1 β-lactamase and active 

against aminopenicillins and early cephalosporins [38]; SHV (sulfhydryl variant of TEM), 

originally detected on the chromosome of K. pneumoniae and subsequently by mechanisms 

of mobilization between different bacteria have been carried to plasmids [34,39]; CTX-M 

(cefotaximase), a group of class A β-lactamases rapidly spreading among Enterobacteri-

aceae worldwide [40]; and KPC (K. pneumoniae carbapenemase) [41]. TEM, SHV and CTX-

M families being plasmid and transposon mediated, have been quickly spreaded to dif-

ferent species particularly between the Enterobacteriaceae [42]. Moreover, acquisition of 



 

point mutations has allowed TEM and SHV to acquire the ability to hydrolyze cephalo-

sporins such as cefotaxime and ceftazidime thereby generating the so called “extended-

spectrum” phenotype (extended-spectrum beta-lactamases, or ESBLs) [43]. Like TEM and 

SHV, CTX-M enzymes, also have been affected by point mutations that enlarged their ac-

tivity and provide resistance to different β-lactams [44]. ESBLs are becoming a major 

threat for the effectiveness of cephalosporins in different clinical contexts worldwide [45]. 

As mentioned above, carbapenemases belong to classes A, B and D of β- lactamases. 

Class A carbapenemases include six enzymes: NmcA (not metalloenzyme carbapenemase 

A), SME (Serratia marcescens enzyme), IMI-1 (Imipenem-hydrolysing β-lactamase), and 

SFC-1 (Serratia fonticola carbapenemase-1); whereas these four enzymes are chromoso-

mally encoded, KPC (KPC-2 to KPC-13), so named because it was first identified in 1996 

in K. pneumoniae, and derivatives of GES (Guiana extended spectrum, GES- 1 to GES-20) 

are plasmid encoded [46–48]. A few years after their discovery, KPC-producing strains 

have spread worldwide, partly due to the fact that they are usually multidrug resistant 

(i.e. resistant aminoglycosides, fluoroquinolones and trimethoprim-sulfamethoxazole) 

[49]. KPC enzymes initially identified in K. pneumoniae, more recently, have been found 

also in P. aeruginosa and A. baumannii [50]. 

Class B β-lactamase (MBLs) are mainly plasmid-encoded enzymes that can inactivate 

the majority of β-lactams, with the exception of monobactams [51]. Their activity is inhib-

ited by by EDTA, a chelator of divalent cations [34,51]. These enzymes include the New 

Delhi MBL (NDM), Imipenem-resistant Pseudomonas (IMP)-type carbapenemases, VIM 

(Verona integron-encoded MBL), GIM (German imipenemase) and SIM (Seoul 

imipenemase) [52,53]. New Delhi MBL (NDM) is an MBL that confer resistance to β-lac-

tams, including carbapenems but not to aztreonam [54]. Currently, up to 8 variants have 

been identified both in enteric pathogens such as K. pneumoniae, E. coli and other gram-

negative bacteria such as A. baumannii and P. aeruginosa [22,55,56]. IMP type car-

bapenemases have been identified for the first time in 1991 in Japan and since then up to 

18 variants have been identified worldwide [57]. It is worth mentioning that the majority 

of these enzymes were investigated in Acinetobacter spp, Pseudomonas spp and enteric path-

ogens [47,58]. VIM-1 (Verona integron-1- encoded metallo β-lactamase) was first de-

scribed in a P. aeruginosa isolate in Verona, Italy, with more than 10 variants being identi-

fied thereafter [59,60]. VIM, like other members of this class, are able to hydrolyzing most 

β-lactams while are susceptible to all β-lactam inhibitors but not to aztreonam [61]. How-

ever, although MBLs are not capable of recognizing and inactivating monobactams it also 

true that these enzymes are often co-expressed with SBLs that, unlike MBLs, are able to 

hydrolyze these antibiotics [51,62]. 

AmpC β-lactamases are clinically important cephalosporinases that belong to Ambler 

class C or to group 1 based on respectively, molecular structure or functional classification 

[63,64]. ampC β-lactamase genes are encoded on the chromosomes of numerous Enterobac-

teriaceae. E. coli naturally carries a chromosome-mediated ampC gene but it is not inducible 

and hence it is possible to treat E. coli infections with β-lactam antibiotics [64–66]. Alt-

hough ampC β- lactamase genes are encoded on the chromosomes of numerous Enterobac-

teriaceae they can be also plasmid-encoded (plasmid-mediated ampC, pampC) [67]. pampC 

genes can be spread by horizontal gene transfer as documented in different strains lacking 

inducible ampC genes such as Klebsiella spp., Proteus mirabilis, Salmonella enterica and Shi-

gella spp [64,68,69]. Moreover, in many gram-negative bacteria including Enterobacter spp., 

Citrobacter freundii, Serratia marcescens, Morganella morganii and P. aeruginosa, induction of 

ampC gene involves other genes products such as AmpR, AmpD, AmpG and AmpE that 

encode, respectively, for a positive transcriptional regulator, a transmembrane protein 

that acts as a permease for 1,6-anhydromurapeptides, a cytosolic N acetyl-anhydromu-

ramyl-L-alanine amidase and a cytoplasmic-membrane protein that acts as a sensory 

transducer molecule necessary for induction [11,64,70,71]. Inducible ampC-mediated β-

lactam resistance is a problem especially in infections due to E. aerogenes and E. cloacae that 

initially to cephalosporins upon therapy become resistant to broad-spectrum agents in-

cluding cefotaxime, ceftazidime and ceftriaxone [64]. Class D carbapenemases are also 



 

known as “oxacillinases” because of their ability to hydrolyze oxacillin and carbapenems 

while have low hydrolysis activity toward cephalosporins [72,73]. Moreover, OXA β-lac-

tamases are not inhibited by classical inhibitors such as clavulanate, sulbactam, and tazo-

bactam, with some exceptions (i.e., OXA-2 and OXA-32 are inhibited by tazobactam) 

[74,75]. OXA-48 is one of the most frequent carbapenemases worldwide; it is not inhibitors 

and it is frequently detected in K. pneumoniae and E. coli, although can also occur in other 

enteric bacteria [76,77]. Variants of OXA-48, commonly referred to as OXA-48-like (i.e as 

OXA-23, and OXA-58) are frequently found in Acinetobacter spp and posed one of the 

greatest threats due to the lack of inhibitors for them [78,79]. Moreover, there are several 

OXA-48-like variants that change their spectrum of activity such as OXA-163, that has lost 

carbapenem activities and gained an ESBL phenotype [80,81]. 

2. Aminoglycosides: mode of action and mechanisms of bacterial resistance 

The aminoglycosides are produced from strains of Streptomyces spp., Micromonospora 

spp., and Bacillus spp [82]. These antimicrobial compounds kill bacteria by binding to the 

bacterial ribosome 30S subunit and blocking the formation of the 70S ribosome [1]. They 

are particularly active against aerobic gram-negative bacteria and mycobacteria while 

they are ineffective against anaerobic strain (e.g., gentamicin need an oxygen-dependent 

active transport to pass through the gram-negative membrane) [83]. Aminoglycosides are 

also effective against gram-positive bacteria when used in combination with other types 

of antibiotics [84]. The principal aminoglycosides that are used clinically are neomycin, 

streptomycin, kanamycin, tobramycin and amikacin [85]. Bacterial resistance to amino-

glycoside antibiotics occurs by three mechanisms: decreased cell permeability, alterations 

at the ribosomal binding sites or production of aminoglycoside modifying enzymes 

[85,86]. The latter is the main mechanism of aminoglycoside resistance and involves three 

families of enzymes: acetyltransferases (AAC), nucleotidyl (adenyl) transferase (ANT) 

and phosphotransferases (APH) [86]. 

3. Sulfonamides: mode of action and mechanisms of bacterial resistance 

Sulfonamides are synthetic antibacterial compounds used in association with dia-

minopyrimidines (trimethoprim or ormetoprim) which together have a synergistic effect 

in inhibiting folic acid metabolism in bacteria [87]. Sulphonamides are structural analogs 

of para-aminobenzoic acid (PABA), and thus act as competitive antagonists with PABA 

for the enzyme dihydrofolate synthase, blocking the synthesis of dihydrofolic acid 

(DHFA) [88]. Trimethoprim inhibits dihyrofolate reductase, an enzyme that reduces dihy-

drofolic acid to tetrahydrofolic acid, locking the production of tetrahydrofolate to its ac-

tive form of folate. When used alone these drugs are bacteriostatic while in combination 

these drugs inhibit two steps in the bacterial biosynthesis of nucleic acids and proteins 

with a bactericidal effect [88,89]. Toxicity is selective since mammalian cells unlike bacteria 

require preformed folic acid and cannot synthesize it [1]. Sulfamethoxazole-trimethoprim 

combination has been useful in the treatment of a variety of infections caused by gram-

positive and gram-negative bacteria such as urinary tract infections and upper and lower 

respiratory tract infections [90,91]. While trimethoprim or sulphonamides resistance alone 

develops rapidly in bacteria, unlike the resistance to sulphonamides and trimethoprim in 

combinations occur more slowly [92]. Resistance occurs via chromosomal and plasmid-

mediated mechanisms [1,92]. In particular, the main mechanism of sulfonamides re-

sistance involves the mutations in folP gene encoding dihydropteroate synthase (DHPS) 

or through acquisition of alternative DHPS genes (sul1, sul2, and sul3), the products of 

which have low affinity to sulfonamides [93]. 

4. Fluoroquinolones: mode of action and mechanisms of bacterial resistance 

The fluoroquinolones are synthetic broad-spectrum antibiotics such as: ciprofloxacin, 

gemifloxacin, levofloxacin, moxifloxacin and ofloxacin [94]. Fluoroquinolones directly in-

hibit bacterial DNA synthesis by the inhibition of two enzymes: topoisomerase II (DNA 

gyrase) and topoisomerase IV [94]. These two enzymes have a similar protein structure, 



 

both being composed of four subunits (two A and two B) but different functions [1,95]. 

The principal function of DNA gyrase is catalyzes negative supercoiling of double-

stranded closed-circular DNA. Topoisomerase IV has a critical role in the unlinking DNA 

after chromosomal duplication [96]. The inhibition of DNA gyrase generate gaps in the 

DNA strands that activate endonucleases, which initiate uncoordinated repair and irre-

versible damage of cells [96]. Fluoroquinolones have the same core quinolone structure 

and differ only for various chemical substitutions and side groups that account for varia-

tions in the lipophilicity, oral absorption, volume distribution, elimination rate and spec-

trum of activity (i.e.moxifloxacin has less activity against P. aeruginosa than ciprofloxacin) 

[96,97]. Fluoroquinolone resistance is usually chromosomally-mediated although plas-

mid-mediated, transferable fluoroquinolone resistance has been described [1,98]. The 

main mechanisms involved in fluoroquinolones resistance are linked to mutations quino-

lone-resistance determining regions (QRDRs), such as gyrA and gyrB in DNA gyrase and 

parC and parE in topoisomerase IV [99]. Moreover, active efflux pump can be overex-

pressed to enhance the excretion of quinolones from the cell. This enhanced efflux in turn 

causes increased minimum inhibitory concentrations of several drugs, including fluoro-

quinolones, tetracycline, chloramphenicol, and ampicillin [98,100]. Mutations that en-

hance efflux occur as a primary step to allow the bacteria to survive [100,101]. 

5. Tetracyclines: mode of action and mechanisms of bacterial resistance 

Tetracycline antibiotics were isolated from various species of Streptomyces in the late 

1940s [102]. Since the 1950s many semisynthetic structural modifications have been made 

on the tetracycline molecule to yield other tetracycline molecules with different pharma-

cokinetic properties and antimicrobial activities [102]. Tetracycline incorporates the re-

lated compounds oxy-, and chlortetracycline, doxycycline and minocycline [103]. The tet-

racyclines are a broad group of antibiotics that includes both those naturally produced 

(oxytetracycline and chlortetracycline, discovered in 1948) and second and third genera-

tion semi-synthetic derivatives such as doxycycline and minocycline [1,104]. Tetracyclines 

possess antibacterial activity by binding to the 30S ribosomal subunit of a susceptible or-

ganism [104]. Following ribosomal binding, the tetracycline interferes with the binding of 

aminoacyl-tRNA to the messenger RNA molecule/ribosome complex, thus disrupting the 

bacterial protein synthesis [105]. Tetracycline binds with the 70S ribosomes found in mi-

tochondria and can also inhibit protein synthesis in mitochondria [1]. Tetracyclines are 

bacteriostatic and they are effective against a wide variety of gram-positive and gram-

negative multiplying bacteria. Resistance to tetracycline is due to acquisition of resistance 

tet genes, carried in plasmids and transposons and transmitted through conjugation, cod-

ing for proteins that activate diverse mechanisms such as tetracycline efflux mediated by 

membrane efflux proteins and ribosomal protection mediated by altered target whereby 

the ribosome is protected from binding of tetracyclines [105–107]. A third, less common 

mechanism involves the synthesis of bacterial enzymes that attack the tetracycline [106]. 
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