
Supplementary Material

Please visit https://github.com/StuartLab/Incubators for further information.

Layout and Configuration

Since several components, including the O2 sensor, 4-digit display, and a button incorporated to keep
the solenoid valves closed when the lid is removed all required 5V power supply, a breadboard was used
to split the power draw across these devices. The solenoid valves require 12V DC power, which is the
upper limit voltage supported by the Arduino Uno. Depending on the application, the Uno and solenoid
valves can be powered in one of two ways. For applications where the system is only run for short
periods of time, both the Uno and solenoids can be powered with a single 12VDC power supply.
However, if the application requires the Uno to be constantly powered, as in the incubator application
developed here, the Uno should be powered with a lower voltage (9VDC), while the solenoid valves are
powered independently with a 12VDC power supply. Heatsinks may be required for various components
including the transistors, though we did not find them necessary under our conditions. Monitoring the
temperature of electrical components is critical in the early stages of development to determine the
need for heatsinks.

A

B

C

Figure S1. Incubator design. (A) Photo of the prototype incubator lid to show wiring during development. (B)
Schematic of electronics. The 5V pin and the ground pin (GND) from the Uno were connected to the breadboard's
positive and negative rails, respectively. The 3.3V (VCC) and GND pins on the ExplorIR CO2 sensor were connected
to the 3.3V and GND pins on the Uno, respectively. The ExplorIR CO2 sensor’s RX pin was plugged into digital pin
13 (D13), while the TX pin was plugged into D12 on the Uno. The VCC and GND pins on the O2 sensor, Grove
Button, and Grove 4-digit display were all plugged into the positive rail and negative rail of the breadboard,
respectively. The SDA pin from the O₂ sensor was connected to the SDA pin on the Uno, and the SCL pin was
connected to the SCL pin on the Uno. The Grove button signal pin was plugged into D8. The Grove 4-digit display
had its DIO pin connected to D3, and its CLK pin connected to D2. The positive wire from the CO2 solenoid was
connected to the positive side of the power source. The negative wire from the CO2 solenoid was connected to the
collector pin of the transistor (middle pin). A diode was connected between the positive and negative wires, with the
white line on the diode facing the positive direction. The emitter (right pin on the transistor) was connected to the
negative side of the power source. The base pin (left pin on the transistor) was connected to D4 on the Uno, with a
1.5k Ohm resistor placed in series. This same setup was done for the O2 solenoid, however the base pin of its
transistor was connected to D7 on the Uno. (C) Schematic of pin placements on CO2 sensor.

Arduino Code

//DO NOT EDIT DELAY COMMANDS AS THEY ARE CRUCIAL FOR CORRECT CONCENTRATION CONTROL. IF
//USING DIFFERENT PRODUCTS OR GAS PRESSURES, CHANGING DELAY LENGTH MAY BE REQUIRED

/*!

 * @file ReadOxygenData.ino

 * @brief Read oxygen concentration, the unit is concentration percent (% vol).

 * @n step: we must first determine the iic device address, will dial the code switch A0, A1 (ADDRESS_0
for [0 0]), (ADDRESS_1 for [1 0]), (ADDRESS_2 for [0 1]), (ADDRESS_3 for [1 1]).

 * @n And then read the data.

 * @n note: it takes time to stable oxygen concentration, about 8 minutes.

 *

 * @n The experimental phenomenon is that a certain percentage of oxygen concentration is printed on
the serial port.

 * @n Because the oxygen concentration in oxygen air is certain, the data will not be greater than 25%
vol.

 *

 * @copyright Copyright (c) 2010 DFRobot Co.Ltd (http://www.dfrobot.com)

 * @licence The MIT License (MIT)

 * @author ZhixinLiu(zhixin.liu@dfrobot.com)

 * @version V0.2

 * @date 2019-10-10

 * @get from https://www.dfrobot.com

 * @url */

//

// FILE: CozirDemoSoftwareSerial.ino

// AUTHOR: Rob Tillaart

// VERSION: 0.1.1

// PURPOSE: demo of Cozir lib

// DATE: 2015-jan-17

// URL: http://forum.arduino.cc/index.php?topic=91467.0

/*

MIT License

Copyright (c) 2012-2021 Rob Tillaart

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.*/

//

#include "cozir.h"

#include "SoftwareSerial.h"

#include <TM1637.h>

#include <DFRobot_OxygenSensor.h>

#include "DFRobot_OxygenSensor.h"

#define COLLECT_NUMBER 10

#define Oxygen_IICAddress ADDRESS_3

DFRobot_OxygenSensor Oxygen;

SoftwareSerial sws(12, 13);

COZIR czr(&sws);

const int CO2solenoidPin = 4;

const int O2solenoidPin = 7;

int CLK = 2;

int DIO = 3;

int buttonPin = 8;

int buttonState = 0;

float O2previous = 0;

TM1637 tm(CLK, DIO);

void setup() {

 // put your setup code here, to run once:

 sws.begin(9600);

 czr.init();

 tm.init();

 tm.set(1);

 Serial.begin(9600);

 while (!Oxygen.begin(Oxygen_IICAddress)) {

 Serial.println("I2c device number error !");

 delay(1000);

 }

 Serial.println("I2c connect success !");

 while (!Serial) {

 }

 Serial.print("Cozir SoftwareSerial: ");

 Serial.println(COZIR_LIB_VERSION);

 Serial.println();

 pinMode(O2solenoidPin, OUTPUT);

 pinMode(buttonPin, INPUT);

 pinMode(CO2solenoidPin, OUTPUT);

 delay(1000);

}

void loop() {

 // put your main code here, to run repeatedly:

 float t = czr.Celsius();

 float f = czr.Fahrenheit();

 float h = czr.Humidity();

 uint32_t c = czr.CO2();

 int CO2data = c * 10;

 if (CO2data >= 0) {

 Serial.print(millis()); //prints CO2 value in ppm

 Serial.print(", ");

 Serial.print (CO2data);

 Serial.println (", ");

 int CO2printO = CO2data / 100;

 tm.display (0, CO2printO / 1000); // prints CO2 value in %

 tm.display (1, CO2printO / 100);

 tm.point (1);

 tm.display (2, CO2printO / 10 % 10);

 tm.display (3 , CO2printO % 10);

 delay (2000);

 digitalWrite (CO2solenoidPin, HIGH);

 delay (400);

 digitalWrite (CO2solenoidPin, LOW);

 delay (2000);

 if (buttonState == HIGH){

 tm.display (0, 13);

 tm.display (1, 0);

 tm.point (0);

 tm.display (2, 0);

 tm. display (3, 7);

 delay (30000);}

 else {

 delay (100);

 }

 }

 if (CO2data < 0) {

 Serial.print(millis()); //prints CO2 value in ppm

 Serial.print (", ");

 Serial.print ((64000 + CO2data));

 Serial.println (", ");

 tm.display (0, ((64000 + CO2data)/100) / 1000); // prints CO2 value in %

 tm.display (1, ((64000 + CO2data)/100) / 100);

 tm.point (1);

 tm.display (2, ((64000 + CO2data)/100) / 10 % 10);

 tm.display (3 , ((64000 + CO2data)/100) % 10);

 delay (1000);

 if (CO2data < -22000 & CO2data > -31000){ //setpoint (when CO2 value is far away)

 digitalWrite (CO2solenoidPin, HIGH);

 delay (400);

 digitalWrite (CO2solenoidPin, LOW);

 delay (1000);

 if (buttonState == HIGH){

 tm.display (0, 13);

 tm.display (1, 0);

 tm.point (0);

 tm.display (2, 0);

 tm. display (3, 7);

 delay (30000);}

 else {

 delay (100);

 }

 }

 if (CO2data < -14700 & CO2data > -20000){ //setpoint (when CO2 value is close to setpoint)

 digitalWrite (CO2solenoidPin, HIGH);

 delay (102);

 digitalWrite (CO2solenoidPin, LOW);

 delay (1000);

 if (buttonState == HIGH){

 tm.display (0, 13);

 tm.display (1, 0);

 tm.point (0);

 tm.display (2, 0);

 tm. display (3, 7);

 delay (30000);}

 else {

 delay (100);

 }

 }

 if (buttonState == HIGH){

 tm.display (0, 13);

 tm.display (1, 0);

 tm.point (0);

 tm.display (2, 0);

 tm. display (3, 7);

 delay (30000);}

 else {

 delay (100);

 }

 delay (2000);

 }

 float oxygenData = Oxygen.ReadOxygenData(COLLECT_NUMBER);

 int O2data = oxygenData * 100;

 Serial.print(millis()); //prints O2 in %

 Serial.print(", , ");

 Serial.println(oxygenData);

 delay(250);

 tm.display (0, O2data / 1000); //prints O2 in %

 tm.display (1, O2data / 100 % 10);

 tm.point (1);

 tm.display (2, O2data / 10 % 10);

 tm.display (3, O2data % 10);

 delay (1000);

 if (oxygenData < 4.98){

 O2previous = oxygenData;}

 if (oxygenData >= 4.98 && oxygenData < 5.08 && O2previous <= oxygenData) { //setpoint (O2 data
close)

 digitalWrite(O2solenoidPin, HIGH);

 delay (700);

 digitalWrite(O2solenoidPin, LOW);

 buttonState = digitalRead (buttonPin);

 if (buttonState == HIGH){

 tm.display (0, 13);

 tm.display (1, 0);

 tm.point (0);

 tm.display (2, 0);

 tm. display (3, 7);

 delay (30000);}

 else {

 delay (100);

 }

 O2previous = oxygenData;

 delay (2000);

 }

 if (oxygenData >= 5.08 && oxygenData < 5.2) { //setpoint (when O2 data moderately close)

 digitalWrite(O2solenoidPin, HIGH);

 delay (1400);

 digitalWrite(O2solenoidPin, LOW);

 buttonState = digitalRead (buttonPin);

 if (buttonState == HIGH){

 tm.display (0, 13);

 tm.display (1, 0);

 tm.point (0);

 tm.display (2, 0);

 tm. display (3, 7);

 delay (30000);}

 else {

 delay (100);

 }

 O2previous = oxygenData;

 delay (5000);

 }

 if (oxygenData >= 5.2 && oxygenData <= 6.3) { //setpoint (when O2 is on final descent to 5%)

 digitalWrite(O2solenoidPin, HIGH);

 delay (800);

 digitalWrite(O2solenoidPin, LOW);

 buttonState = digitalRead (buttonPin);

 if (buttonState == HIGH){

 tm.display (0, 13);

 tm.display (1, 0);

 tm.point (0);

 tm.display (2, 0);

 tm. display (3, 7);

 delay (30000);}

 else {

 delay (100);

 }

 delay (2500);

 }

 if (oxygenData > 6.3 && oxygenData <= 7){ //setpoint (O2 is still in descent, but starts to slow down)

 digitalWrite (O2solenoidPin, HIGH);

 delay (950);

 digitalWrite (O2solenoidPin, LOW);

 buttonState = digitalRead (buttonPin);

 if (buttonState == HIGH){

 tm.display (0, 13);

 tm.display (1, 0);

 tm.point (0);

 tm.display (2, 0);

 tm. display (3, 7);

 delay (30000);}

 else {

 delay (100);

 }

 delay (2000);

 }

 if (oxygenData >= 7 && oxygenData < 8.5) { //setpoint (O2 is quite far from 5%)

 digitalWrite(O2solenoidPin, HIGH);

 delay (1200);

 digitalWrite(O2solenoidPin, LOW);

 buttonState = digitalRead (buttonPin);

 if (buttonState == HIGH){

 tm.display (0, 13);

 tm.display (1, 0);

 tm.point (0);

 tm.display (2, 0);

 tm. display (3, 7);

 delay (30000);}

 else {

 delay (100);

 }

 delay (2000);

 }

 if (oxygenData >= 8.5) { //setpoint (O2 is only beginning descent)

 digitalWrite (O2solenoidPin, HIGH);

 delay (3000);

 digitalWrite (O2solenoidPin, LOW);

 buttonState = digitalRead (buttonPin);

 if (buttonState == HIGH){

 tm.display (0, 13);

 tm.display (1, 0);

 tm.point (0);

 tm.display (2, 0);

 tm. display (3, 7);

 delay (30000);}

 else {

 delay (100);

 }

 delay (2000);

 }

 buttonState = digitalRead (buttonPin);

 if (buttonState == HIGH){

 tm.display (0, 13);

 tm.display (1, 0);

 tm.point (0);

 tm.display (2, 0);

 tm. display (3, 7);

 delay (30000);}

 else {

 delay (100);

 }

}

