

Nutrients 2023, 15, 1199. https://doi.org/10.3390/nu15051199 www.mdpi.com/journal/nutrients

Supplementary Materials

Section S1. SARIMAX architecture
We start from a time series 𝑤𝑡. An AR(p) model can be specified by 𝑤௧ = 𝛽 + 𝜖௧ + ∑ 𝜃௜𝑤௧ିଵ௣௜ୀଵ , (S1)
Where p is the number of time lags to regress on, 𝝐𝒕 is the noise at time 𝑡 and 𝛽 is a constant.
This equation can be made more concise using the lag operator, 𝐿. 𝐿௡𝑤௧ = 𝑤௧ି௡, (S2)
Taking 𝚯 (𝐿) to be an order p polynomial function of 𝐿, we can define an autoregressive
model by 𝑦௧ = Θ(𝐿)௣𝑦௧ + 𝜖௧, (S3)
Taking note that the constant has been absorbed into the polynomial 𝚯. Whereas auto-
regressive models regress on prior values of 𝑤𝑡, moving average models regress on prior
values of error. An 𝑀𝐴(𝑞) model can be specified by 𝑤௧ = Φ(𝐿)௤𝜖௧ + 𝜖௧, (S4)
where 𝑞 is the number of time lags of the error term to regress on and 𝚽 is defined analo-
gously to  𝚯. 𝐴𝑅𝑀𝐴(𝑝,𝑞) models are a sum of 𝐴𝑅(𝑝) and 𝑀𝐴(𝑞) models. 𝑤௧ = Θ(𝐿)௣𝑤௧ + Φ(𝐿)௤𝜖௧ + 𝜖௧𝑤௧, (S5)
To help tackle non-stationary data, we introduce an integration operator ∆𝒅, defined as
follows ∆ௗ𝑤௧ = 𝑤௧ሾௗିଵሿ െ 𝑤௧ିଵሾௗିଵሿ, (S6)
where ∆𝟎𝒘𝒕 = 𝒘𝒕 and 𝑑 is the order of differencing used.
We can now fit an 𝐴𝑅𝑀𝐴(𝑝,𝑞) model to ∆𝒅𝒘𝒕 ∆ௗ𝑤௧ = Θ(𝐿)௣∆ௗ𝑤௧ + Φ(𝐿)௤∆ௗ𝜖௧ + ∆ௗ𝜖௧, (S7)
With some algebra, we can rearrange the equation and absorb constants into the polyno-
mials 𝚯 and 𝜱 obtaining 𝛩(𝐿)௣∆ௗ𝑤௧ = 𝛷(𝐿)௤∆ௗ𝜖௧, (S8)
SARIMA models take seasonality into account by essentially applying an ARIMA model
to lags that are integer multiples of seasonality. Once the seasonality is modeled, an
ARIMA model is applied to the leftover to capture non-seasonal structure. To see this
more clearly, suppose we have a time series 𝑤𝑡 with seasonality 𝑠. We can try to eliminate
the seasonality with differencing, by applying the differencing operator ∆𝒔𝑫 to take the
seasonal differences of the time series. Here, s is the number of time lags comprising one
full period of seasonality. 𝐷 takes on a similar meaning to 𝑑 in ARIMA models, but instead
applies to seasonal lags. We can then capture any remaining structure by applying
an 𝐴𝑅𝑀𝐴(𝑃,𝑄) model, to the different values, but using seasonal lags. i.e., instead of using
a regular lag operator 𝐿, we use 𝑳𝒔. 𝑃 and 𝑄 are again seasonal time lags ∆௦஽𝑤௧ = 𝜃(𝐿௦)௣∆௦஽𝑤௧ + 𝜑(𝐿௦)ொ∆௦஽𝜖௧ + ∆௦஽𝜖௧, (S9)
As with ARIMA, massaging the equation and absorbing constants into polynomials yields
the following concise form 𝜃(𝐿௦)௣∆௦஽𝑤௧ = 𝜑(𝐿௦)ொ∆௦஽𝜖௧, (S10)
With any seasonality now removed, we can apply another 𝐴𝑅𝐼𝑀𝐴(𝑝,𝑑,𝑞) model to sDwt
by multiplying the seasonal model by the new ARIMA model. 𝛩(𝐿)௣𝜃(𝐿௦)௣∆ௗ∆௦஽𝑤௧ = 𝛷(𝐿)௤𝜑(𝐿௦)ொ∆ௗ∆௦஽𝜖௧, (S11)
This is the general form of a 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝,𝑑,𝑞)(𝑃,𝐷,𝑄,𝑠) model.
SARIMAX models take exogenous variables into account - i.e., variables measured at
time t that influence the value of our time series at time t, but that are not autoregressed
on. To do this, we simply add the terms in on the right-hand side of SARIMA equations.

Nutrients 2023, 15, 1199 2 of 5

For n exogenous variables defined at each time step t, denoted by 𝒙𝒕𝒊 for 𝑖≤𝑛 with coeffi-
cients 𝜷𝒊, the 𝑆𝐴𝑅𝐼𝑀𝐴𝑋(𝑝,𝑑,𝑞)(𝑃,𝐷,𝑄,𝑠) model is 𝛩(𝐿)௣𝜃(𝐿௦)௣∆ௗ∆௦஽𝑤௧ = 𝛷(𝐿)௤𝜑(𝐿௦)ொ∆ௗ∆௦஽𝜖௧ + ∑ 𝛽௜𝑥௧௜௡௜ୀଵ . (S12)

Section S2. Transformer architecture
The Transformer [1] follows the encoder-decoder architecture, quite common in most

competitive neural sequence transduction models [2–5], using stacked self-attention and
pointwise, fully connected layers for both encoder and decoder (Figure S1).

Figure S1. Schema representing Transformer architecture.

In particular, the encoder and decoder are composed of a stack of N = 6 identical layers
that contain two sublayers each one (a multi-headed self-attention mechanism and a sim-
ple position wise fully connected feed-forward network) around which a residual connec-
tion is used, followed by layer normalization. In the decoder, in addition, there is also a
third layer which performs multi-head attention over the output of the encoder stack, that
can be resume as: 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥)), (S13)
where Sublayer(x) is the function implemented by the sublayer itself.
For the decoder, the self-attention sub-layer is also modified to prevent positions from
attending to subsequent positions. This masking, combined with the fact that the output
embeddings are offset by one position, ensures that the predictions for position i can de-
pend only on the known outputs at positions less than i.
In this configuration, the attention functions, mapping a query and a set of key-value pairs
to an output (the query, keys, values and output are all vectors), compute the output as a
weighted sum of the values, where these weights are computed by a compatibility func-
tion of the query with the corresponding key.
For the Transformer’s architecture the Scaled Dot-Product Attention function is used. In
this function, the input consists of queries and keys of dimension 𝒅𝒌, and values of di-
mension 𝒅𝒗.

Nutrients 2023, 15, 1199 3 of 5

Figure S2. Scaled Dot-Product Attention schematic.

This block (Figure S2) computes the dot products of the query with all keys, divided each
by ඥ𝒅𝒌, and applies a softmax function to obtain the weights on the values. In practice,
the attention function is computed on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V. The
matrix of outputs is computed as: 𝐿௡𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ൬ொ௄்ඥௗೖ൰ 𝑉, (S14)

The Scaled Dot-Product Attention is an evolution of the Dot-Product Attention, where the
scaling of 𝟏ඥ𝒅𝒌 allows to counteract a problem for large values of 𝒅𝒌, where the dot prod-

ucts could grow large in magnitude and push the softmax function into regions where it
has extremely small gradients.
However, with a single attention head, averaging inhibits the model to jointly attend to
information from different representation subspaces at different positions. Therefore, in-
stead of performing a single attention function with 𝒅𝒎𝒐𝒅𝒆𝒍-dimensional keys, values and
queries, it is advantageous to linearly project the queries, keys and values h times with
different, learned linear projections to 𝒅𝒌, 𝒅𝒌 and 𝒅𝒗 dimensions, respectively. On each
of these projected versions of queries, keys and values then the attention function is per-
formed in parallel, yielding 𝒅𝒗-dimensional output values. These are concatenated and
once again projected, resulting in the final values, as depicted in Figure S3.

Figure S3. Multi-Head Attention schematic.

Nutrients 2023, 15, 1199 4 of 5

This is called Multi-Head Attention and it could be represented through the following
formula: 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑, … , ℎ𝑒𝑎𝑑௡)𝑊ை, (S15)
where 𝒉𝒆𝒂𝒅𝒊 = 𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏൫𝑸𝑾𝒊𝑸, 𝑲𝑾𝒊𝑲, 𝑽𝑾𝒊𝑽൯ and the projections are parameter matri-
ces 𝑾𝒊𝑸 ∈ ℝ𝒅𝒎𝒐𝒅𝒆𝒍×𝒅𝒌, 𝑾𝒊𝑲 ∈ ℝ𝒅𝒎𝒐𝒅𝒆𝒍×𝒅𝒌, 𝑾𝒊𝑽 ∈ ℝ𝒅𝒎𝒐𝒅𝒆𝒍×𝒅𝒗 and 𝑾𝒊𝑶 ∈ ℝ𝒉𝒅𝒌×𝒅𝒎𝒐𝒅𝒆𝒍.
For example, considering h=8 parallel attention layers in the tuning of the model, or heads,
for each of them then 𝒅𝒌 = 𝒅𝒗 = 𝒅𝒎𝒐𝒅𝒆𝒍𝒉 = 𝟔𝟒. Due to the reduced dimension of each head,
the total computational cost is like that of single-head attention with full dimensionality.
The Transformer uses the Multi-Head Attention in three different ways:
In the decoder we have two types of attention:
• The first one, the self-attention layer, contains self-attention layers where all the keys

(K), values (V) and queries (Q) come from the same place (the output of the previous
layer). In such a way, each position in the decoder can attend to all positions in the
previous layer. This applies also for the self-attention layer of the encoder.

• Instead, in the second one, the encoder-decoder attention layers, Q come from the
previous layer as well, but K and V come from the output of the encoder allowing
every position in the decoder to attend over all positions in the input sequence, mim-
icking the typical encoder-decoder attention mechanisms in sequence-to-sequence
models [2,6,7].

As explained earlier, in addition to attention sub-layers, the encoder and decoder layers
also contain a fully connected feed-forward network, which is applied to each position
separately and identically, with two linear transformations alternating with ReLU activa-
tion in between. 𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊ଵ + 𝑏ଵ) 𝑊ଶ + 𝑏ଶ, (S16)
Despite being the same across different layers, linear transformations use different param-
eters.
Transformer uses sine and cosine function of different frequencies as positional encoding
to the input embedding at the bottoms of the encoder and decoder stacks to add some
information about the relative or absolute position of the tokens in the sequence. 𝑃𝐸(௣௢௦,ଶ௜) = 𝑠𝑖𝑛 (𝑝𝑜𝑠10000 ଶ௜ௗ೘೚೏೐೗), (S17)𝑃𝐸(௣௢௦,ଶ௜ାଵ) = 𝑐𝑜𝑠 (𝑝𝑜𝑠10000 ଶ௜ௗ೘೚೏೐೗), (S18)

where pos is the position and i is the dimension. In this way, each dimension of the posi-
tional encoding corresponds to a sinusoid. The wavelengths form a geometric progression
from 2π to 10000 · 2π. This function allows the model to easily learn to attend to relative
positions, since for any fixed offset k, 𝑷𝑬𝒑𝒐𝒔ା𝒌 can be represented as a linear function of 𝑷𝑬𝒑𝒐𝒔.

Section S3. Models’ parameters

Table S1. The results of the tuning of each model are reported in the table, in particular for the
SARIMAX model the parameters are the following: (p,dq)x(P,D,Q,S); for the LSTM and GRU: (units,
epochs, batch size, dropout); for the Transformer: (head size, num heads, epochs, batch size, drop-
out).

Users SARIMAX LSTM GRU Transformer
0 (4,1,2)x(1,1,1,7) (100,150,16,0.2) (50,100,8,0.2) (256,2,100,8,0.25)
1 (2,1,1)x(1,1,1,7) (150,50,16,0.2) (100,100,32,0.2) (128,8,50,8,0.25)
2 (2,1,1)x(1,1,1,7) (50,150,32,0.2) (100,50,32,0.2) (256,2,50,8,0.25)
3 (2,1,1)x(1,1,1,7) (50,100,32,0.2) (100,100,32,0.2) (64,2,50,8,0.2)
4 (2,2,2)x(1,1,1,7) (100,50,16,0.2) (150,50,16,0.2) (128,2,50,32,0.2)

Nutrients 2023, 15, 1199 5 of 5

5 (2,1,2)x(1,1,1,7) (100,100,16,0.2) (150,150,8,0.2) (64,2,50,16,0.2)
6 (1,1,2)x(1,1,1,7) (150,150,8,0.2) (100,50,8,0.2) (256,2,50,16,0.2)
7 (2,1,1)x(1,1,1,7) (150,50,16,0.2) (150,100,16,0.2) (64,2,150,32,0.2)
8 (1,2,2)x(1,1,1,7) (100,100,16,0.2) (100,50,16,0.2) (64,4,100,16,0.2)
9 (3,1,1)x(1,1,1,7) (150,150,8,0.2) (50,150,32,0.2) (128,8,100,8,0.2)

References

1. Vaswani, A.; Brain, G.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All

You Need; 2017;

2. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. 2014.

3. Sutskever Google, I.; Vinyals Google, O.; le Google, Q. v Sequence to Sequence Learning with Neural Networks;

4. Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase

Representations Using RNN Encoder-Decoder for Statistical Machine Translation. 2014.

5. Kim, Y.; Denton, C.; Hoang, L.; Rush, A.M. Structured Attention Networks. 2017.

6. Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional Sequence to Sequence Learning. 2017.

7. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q. v.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s

Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

