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Supplementary Methods.

1.1. Metabolite Analysis

A global metabolomics approach was performed using a proprietary pipeline developed by
Metabolon Inc. (Durham, NC). Samples were transported to Metabolon on dry ice and immediately stored
at -80°C until processing. Samples were rapidly thawed, methanol containing several recovery standards
was added proportionate to tissue weight, and the samples dissociated under vigorous shaking (2min,
GenoGrinder 2000, Glen Mills) to denature the protein and release protein-bound small molecules. Protein
concentrations were determined using the Bradford method for later data normalization. Samples were
centrifuged to remove the protein precipitate, and the methanol extracts were harvested using an
automated MicroLab STAR system (Hamilton Company, Salt Lake City, UT). Each sample was divided
into five aliquots for their subsequent respective analyses, placed briefly on a TurboVap (Zymark) to
remove the organic solvent, then stored overnight under nitrogen. Samples were reconstituted in the
appropriate solvent, optimized for that analytical mode, and containing standards at fixed concentrations
to normalize injection volume and chromatographic consistency.

Liquid chromatography-mass spectrometry (LC-MS) analysis was carried out using a Waters
ACQUITY ultra high-performance liquid chromatography (UHPLC) and a Thermo Scientific Q-Exactive
orbitrap mass spectrometer interfaced with a heated electrospray ionization source and Orbitrap mass
analyzer operated at 35,000 mass resolution, as detailed in [1]. Two samples were subjected to reverse phase
(RP)/UPLC-MS/MS methods with positive ion mode electrospray ionization (ESI). In the first, which
targeted more hydrophilic compounds, the extract was gradient eluted from a C18 column (Waters UPLC
BEH C18-2.1 x 100mm, 1.7um) using water and methanol, and containing 0.05% perfluoropentanoic acid
(PFPA) and 0.1% formic acid. The second positive ion mode ESI targeted more hydrophobic compounds,
using the same C18 column with 0.05% PFPA and 0.1% formic acid in water, but gradient eluted using 50%
methanol and 50% acetonitrile. A third aliquot was analyzed using RP/UPLC-MS/MS with negative ion
mode ESI, using the same C18 column with 6.5mM ammonium bicarbonate at pH 8 in water, and gradient
eluted using 95% methanol/5% water with 6.5mM ammonium bicarbonate at pH 8. The fourth sample was
analyzed using HILIC/UPLC-MS/MS with negative ion mode ESI, using a Waters HILIC column (Waters
UPLC BEH amide 2.1 x 150mm, 1.7um) with 15% water/5% methanol/80% acetonitrile against a gradient
of 50/50 water and acetonitrile, all containing 10mM ammonium formate, pH 10.8. The fifth sample was
reserved for backup. The separation and run times were ~7min for the NEG and HILIC, and ~3.5min for
the POSEarly and POSLate, and used an alternating column system wherein one column performed the
separation while the other was being cleaned and reconditioned for the next sample. The MS analysis
alternated between MS and data-dependent MS scans using dynamic exclusion. The scan range varied
slightly between methods but covered 70 - 1000 m/z.

Quality controls (QC) included a process blank of ultrapure water, a solvent blank, and a pooled
matrix sample comprised of a small aliquot from each experimental sample. Five QC samples and three



process blank samples were processed for every batch of 30 samples. Added to each experimental sample
was a recovery sample cocktail of isotopically labeled and halogenated compounds selected to not interfere
with measurement of endogenous samples, and used to aid chromatographic alignment and monitor
instrument performance, as detailed [1]. As an additional quality control, the overall process variability
was determined by calculating the median relative standard deviation (RSD) value for all endogenous
metabolites present in 100% of the QC samples, which were technical replicates created from the pool of
experimental samples. The median RSD for these QC samples was 8%. The injection order of the
experimental samples was randomized, and the quality control samples were evenly interspersed between
these injections. The samples analyzed here were all run in a single day. Additional details on the analytical
methodology are presented in [1], which reports an average intra-assay coefficient of variation (CV) of <
7%, and an average inter-assay CV of 9.9% - 12.6%.

1.2. Data Analysis

Raw data were extracted, peak-identified, and the quality controls processed using custom
software proprietary to Metabolon and based on criteria of peak detection, integration, and alignment
[2,3]. Biochemicals were identified by comparison to Metabolon’s proprietary library, built from the
analysis of authentic standards and comprised of 3300 purified, authenticated compounds annotated
with respect to retention time/index (RI), mass-to-charge ratio (m/z), and chromatographic data including
MS/MS spectral data on all four platforms [2], consistent with Tier 1 identification standards defined by
the Metabolomics Standards Initiative [4]. Feature alignment across the samples was accomplished using
a series of internal standards to establish a retention index (RI) ladder based upon the internal instrument
performance standards. RlIs of experimental peaks were determined by (i) comparison against the
internal standard RI markers within 150 RI units (~10 seconds) and assumed a linear fit, (ii) mass match to
the library authenticated standard within +/- 10ppm, and (iii) quality of the fragmentation spectrum
match between the experimental and library compound [1]. The use of all three criteria were used to
distinguish and differentiate the biochemicals. All compounds reported were manually reviewed by a QC
analyst to confirm the quality of peak integration, alignment, and identification across all samples in the
study. Signals representing system artifacts, mis-assignments, and background noise were removed.
Peaks were quantified using area-under-the-curve, and values are presented as median scaled data.
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Supplementary Figures (Figure S1-56), Supplementary Tables (Table 51-5S3)
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Figure S1. The Volcano plot for the analysis of 724 metabolites in (a) Maternal liver and (b) Fetal liver at q

<0.05.
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Figure S2. Scree plot and 3D-plot of the PCA analysis in (a) Maternal Liver and (b) Fetal liver. N =724
metabolites.
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c). Amino-Acid Metabolites
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Figure S3. Relative Abundance of (a) Glucose and TCA Cycle Intermediates, (b) Lipid Classes, and (c)
Amino-Acid Related Metabolites in ALC vs. CON in Fetal Liver. Lipid classes are: medium chain FAs
(C6:0-C12:0), saturated FAs (C14:0-C22:0), monounsaturated FAs (C14:1-C22:1), polyunsaturated FAs
(C14:2-C24:6), and phosphotidylglycerol (C16:0, C18:0, C18:1 and C18:2 at sn1 or sn2 position).
Abundance of CON is normalized to 1.0, and comparisons used Wilcoxon test. Boxplots depict the data’s
spread (measured in inter quartile range), middle line depicts the median, and the dots indicate outliers. *
q<0.05, #0.05> q<0.10. Alpha-KG alpha-ketoglutarate; FA Fatty Acid; Fructose-6-P fructose-6-
phosphate; Fructose-1,6-BP fructose-1,6-bisphosphate; Glucose-6-P glucose-6-phosphate; MUFA
monounsaturated FA; PEP phosphoenolpyruvate; PUFA polyunsaturated FA; SFA saturated FA.
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Figure S4. Relative Abundance of Purine and Pyrimidine Metabolites in ALC vs. CON in (a) Maternal
and (b) Fetal Liver. Abundance of CON is normalized to 1.0, and comparisons used Wilcoxon test.
Boxplots depict the data’s spread (measured in inter quartile range), middle line depicts the median, and
the dots indicate outliers. * q < 0.05. AMP adenosine-monophosphate; GMP guanine-monophosphate;

CMP cytosine-monophosphate; UMP uridine-monophosphate. Note that TMP was not detected.
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Figure S5. Separation of Maternal Liver metabolites as ALC vs. CON Based on Fetal Body Weights. (a)
PCA, PLS-DA and oPLSDA plots depicting the separation of maternal liver metabolites as ALC vs. CON
based on Fetal Body Weights. The legend and the corresponding color in the plots indicate increase in
fetal body weight (in g) values from blue to red. (b) The Top 30 Metabolites extracted as VIP scores in the
first orthogonal component in oPLSDA with FC (ALC/CON), g-value, and Pearson’s Correlation (R)



analysis with respect to Fetal Body Weights. Significant correlations at p < 0.05 are bold and italicized,
and 0.05 < p <0.10 are italicized. (c) Correlation Plots of top select metabolites identified in oPLSDA with
Fetal Body Weights. The blue and red trendlines indicate significant negative and positive correlations,
respectively.
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Figure S6. Separation of Fetal Liver Metabolites as ALC vs. CON Based on Fetal Body Weights. (a) PCA,
PLS-DA and oPLSDA plots depicting the separation of Fetal liver metabolites as ALC vs. CON based on
Fetal Body Weights. The legend and the corresponding color in the plots indicate increase in fetal body
weight (in g) values from blue to red. (b) The Top 30 Metabolites extracted as VIP scores in the first
orthogonal component in oPLSDA with FC (ALC/CON), g-value, and Pearson’s Correlation (R) analysis
with respect to Fetal Body Weights. Significant correlations at p < 0.05 are bold and italicized. (c)
Correlation Plots of Top Select Metabolites Identified in oPLSDA with Fetal Body Weights. The blue and
red trendlines indicate significant negative and positive correlations, respectively.

Table S1. Maternal and Fetal Weight and Survival Characteristics.



Controls Alcohol-Exposed p-Value

Maternal Weight at E0.5, g 1837 +1.18 18.16 +1.09 0.71
Maternal Weight at E8.5, g 21.20+1.68 21.10+1.36 0.88
Maternal Weight Gain (E0.5- 13.96 +2.23 1328 £2.25 0.52
E17.5), g
Maternal Weight Gain (E8.5- 11.08 £ 1.50 10.35 + 1.47 0.28
E17.5) g
Litter Size at E17.5 7.00+1.22 7.11+1.36 0.85
Resorptions at E17.5 1.00 + 1.00 1.00 +1.22 0.81
Percent Survival at E17.5 * 88.8 + 3.58 84.7 +4.57 0.69
Fetal Weight at E17.5, g 0.92+0.11 0.88 +0.12 0.31
Fetal Liver Weight at E17.5, g 0.049 + 0.004 0.040 + 0.004 <0.001
Fetal Brain Weight at E17.5, g 0.052 + 0.004 0.044 = 0.003 <0.001
Fetal Liver/ Body Weight
etal Liver/ Body Weig 0.053 + 0.004 0.045 + 0.005 <0.01
Ratio
Fetal Brain/ Body Weight
e ra‘rl‘iatf; y welg 0.056 + 0.004 0.050 + 0.007 0.07

All values are mean * SD. with N=9 dams per treatment group. Statistical comparisons using ANOVA
(for normal data with equal variance) or Kruskal-Wallis test (for non-normal data and/or data with
unequal variance).*Percent Survival calculated as [Number of live fetuses / (number of live fetuses +
number of resorptions)] x 100.

Table S2. List of Metabolites Significantly Altered by Alcohol Exposure in Maternal Liver with their
Identifiers, Relative Abundance Fold-change (ALC/CON) and g-values.

Table S3. List of Metabolites Significantly Altered by Alcohol Exposure in Fetal Liver with their
Identifiers, Relative Abundance Fold-change (ALC/CON) and g-values.



