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Table S1. Quantitative analyses of the PB film’s initial CV curve. 

Peak location (V) Capacity (mC cm−2) Initial  
CEs (%) 

Polarization poten-
tial (V) Cathodic Anodic Cathodic Anodic 

0.12 0.32 14.60 12.93 88.56 0.20 

Table S2. Quantitative analyses of the redox electrolyte’s initial CV curve. 

Peak location (V) Capacity (mC) Initial  
CEs (%) 

Polarization 
potential (V) Cathodic Anodic Cathodic Anodic 

0.14 0.35 18.94 19.17 98.80 0.21 

 

Table S3. Electrochromic performance comparison of different PB-based devices. 

Counter  
electrode 

Driving volt-
age (V) 

Coloration efficiency (cm2 C−1) 
@ Bias potential (V) 

Transmittance 
modulation 

(ΔT) @ wavelength 
Ref 

ZnO -2.0 ~ 1.3 ~ 52.0%@686 nm [1] 
Zn 0.5 ~ 1.9 76.8@1.9 84.9%@633 nm [2] 
Zn 0.8 ~ 1.6 131.5@1.6 67.2%@632.8 nm [3] 
Al 0.8 ~ 2.1 ~ 52.2%@670 nm [4] 

FTO -1.2 ~ 1.8 87.4@1.8 44.9%@680 nm [5] 

PEDOT-EthC6 -1.4 ~ 1.8 563@1.8 3 ~ 50%@visible 
light [6]  

Poly(butyl vio-
logen) -1 ~ 1.7 157@1.7 62.5%@545 nm [7] 

[Fe(CN)6]3-

/[Fe(CN)6]4- -0.6 ~ 0.4 77.75@0.4 78.5%@633 nm* This 
work 

*A box-like device consisting of two bare FTO glasses and 1mm-thick electrolyte is used as the 
baseline for transmittance test. 

Table S4. Quantitative analyses of the initial CV curves of the PB-ECW and PFSA/PB-ECW devic-
es. 

ECW Peak location (V) Capacity (mC 
cm−2 ) Initial  

CEs (%) 
Polarization 
potential (V) 

Cathodic Anodic Inserted Extracted 
PB-ECW -0.27 0.25 27.16 17.89 65.87 0.52 
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PFSA/PB-ECW -0.11 0.04 20.72 18.66 90.06 0.15 
 

Table S5. Optical memory abilities of the PB-ECW and PFSA/PB-ECW devices at different open-
circuit aging times. 

Rest times in 
open circuit 

state 

Transmittance of PB-ECW Transmittance of PFSA/PB-ECW 

Colored Bleached ΔT Colored Bleached ΔT 

0 s  7.9 14.8 6.9 5.6 83.9 78.3 
300 s 11.2 12.1 0.9 5.7 58.2 52.3 
1500 s 11.3 11.7 0.4 5.9 39.3 33.4 

 

 
Figure S1. SEM images of the electrodeposited PB films (50 μA cm−2 for 300s) after air-drying. 

 
Figure S2. Profile of the cyclic voltametric (CV) test stimulating the bleaching/coloring switching 
processes of PFSA/PB-ECW. 
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Figure S3. Transmittance spectra of PB/FTO and PFSA/PB/FTO. 

 
Figure S4. Profile of the square-wave voltage stimulating the bleaching/coloring switching pro-
cesses of PFSA/PB-ECW in the chronoamperometry (CA) test. 

 
Figure S5. Chronoamperometry (CA) curves and corresponding transmittance evolution at the 
end of cycling test. 

 
Figure S6. galvanostatic charge/discharge (GCD, blue lines) profiles and transmittance variation 
(green lines). 
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