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Workplace exposure to TiO2 nanoparticles is commonly measured by using differen-

tial mobility analyser (DMA) and optical particle sizer. Different metrics are usually com-

bined without taking into account instruments different responses. Here is demonstrated 

with TiO2 agglomerates the size relation between these two detection techniques. Freshly 

generated TiO2 particles were size classified with DMA followed by optical sizing. Optical 

diameter was 0.14 times the mobility diameter for particles above 90 nm in diameter (de-

tection limit of the optical particle sizer). 

1. Introduction 

Sizing accuracy of the OPC depends strongly on refractive index (m) of particle com-

position and particle morphology (Pinnick et al., 2000; Sorensen, 2001). Thus, the meas-

urement results depend strongly on the aerosol properties. This may be eliminated with 

proper calibration to obtain comparable measurements between different detection tech-

niques. Leskinen et al. (2012) performed a nanoparticle monitoring instrument compari-

son study, where additional experiment was performed by mobility classifying TiO2 ag-

glomerates and subsequently measuring with high resolution optical detector. This was 

used to assess the relation of TiO2 agglomerates mobility and optical size. 
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2. Methods 

TiO2 agglomerates were synthesized in a laminar flow reactor by decomposing by a 

titanium tetraisopropoxide (97% TTIP solution, Aldrich) precursor (Koivisto et al., 2011; 

Leskinen et al., 2012). The experimental setup is presented in Figure S1. 

 

Figure S1. Experimental setup consisting of TiO2 generator, a porous an ejector diluter (Lyyränen 

et al., 2004), 64Ni neutralizer, a mobility classifier, and a scanning mobility particle sizer and laser 

aerosol spectrometer. 

Particle optical diameter was measured with TSI Laser Aerosol Spectrometer (LAS) 

model 3340. The LAS uses a HeNe (λ = 633 nm) laser to illuminate particles with over 1 W 

power. Scattered light is collected with two pairs of Magnin collection optics (35-120o); 

one for avalanche photo diode to detect the smallest particles and another for PIN photo-

diode to detect large particles. This detection system ensures wide measurement range 

from 90 nm to 7.5 μm with high resolution (maximum 100 bins). 

TiO2 aerosol agglomerates with gas-phase nanoparticle generator (Leskinen et al., 

2012). TiO2 aerosol was neutralized with a bipolar 63Ni charger and classified with Hauke 

short DMA. Aerosol classification was verified with TSI SMPS consisting of 3085 classifier 

with nDMA and 3786 CPC in parallel with LAS. The instruments factory calibrations were 

checked with polystyrene latex (PSL) particles (Leskinen et al., 2012). TiO2 agglomerates 

mobility classification with DMA was verified the SMPS. 

3. Results 

The mobility classified TiO2 particles correlation with the SMPS was 

classifiedmobmobTSI DD ,, 05.13.0   

This shows that the mobility classification was functioning properly. TiO2 agglomer-

ates optical size relation was  

���� = 90 �� + 0.14 × ����, 
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where the Dopt is the optical diameter (nm) and Dmob (nm) is the mobility classified TiO2 

agglomerate diameter. The individual measurements are shown in Figure 2. 

4. Discussion and conclusions 

Variation in Figure S2 may have been caused by mie-scattering non-linear behaviour 

(Pinnick et al., 2000). The relation of optical and mobility particle size can be used to trans-

late mobility size to optical size or vice versa. The relation is useful when translating the 

particle size distribution to different metrics, such as surface area or mass (Koivisto, 2013). 

However, the relation was classified to highly agglomerated TiO2 particles, which why 

the relation is not applicable to e.g., spherical TiO2 particles. 

 

Figure S2. Optical diameter of mobility classified TiO2 agglomerates. The refractive index of TiO2 is 

mTiO2 ≈ 2.4 at λ = 630 nm. The measured particle size distributions were narrow having a mean geo-

metric standard deviation of 1.16. 
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