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Supplementary material is divided into two separate parts, two sections. The first one deals
with the context and the general correspondence principle that links the mechanical model and the
material parameters. The second focuses on a specific measurement methodology which provides
k1, k2 and δ mediated by a double exponential deflection in a time-dependent bending recovery
experiments.

1 The mechanical model connection with material
parameters

The relations that link the photopolymer material properties to the mechanical model (Figure 1 in
the main text) can be determined on the basis of the elastic-viscoelastic correspondence theorem [1].
The deflection of a viscoleastic beam subject to a load applied at t = 0 and then held constant is
derived from the deflection of the corresponding elastic beam by replacing the reciprocal Young’s
modulus 1/E 1 by the time-dependent creep-compliance function J(t). Assume that the lateral force
Fe (beginning at t = 0) applies just on the endpoint of the cantilevered nanowire in air, that is,
without any relevant surrounding medium. We note that this procedure applies only to this section
and is illustrated here by a thought experiment to derive the relationship between k1,2 and E1,2,
and between δ and ηi.

For purely elastic conditions, Euler’s beam theory gives the end-point deflection xe in a form

xe =

(
Fel

3

3I

)
1

E
. (S1)

Here, l is the length of cantilever, I is the second moment of inertia of the beam cross section. The
creep-compliance of the standard linear solid in the Kelvin’s formulation [1] (see Fig.1a in the main
text) is given by

J(t) =
1

E1
+

1

E2
− 1

E2
exp

(
−E2t

ηi

)
. (S2)

Substituting J(t) for 1/E in Eq.(S1) we obtain single exponential temporal behavior of the viscoelas-

1What we are referring here is newly introduced E, which belongs to the purely elastic structure.
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tic beam deflection

xve(t) =

(
Fel

3

3I

)[
1

E1
+

1

E2
− 1

E2
exp

(
−E2t

ηi

)]
︸ ︷︷ ︸

= J(t)

(S3)

in this special case. We may also extract the time dependent deflection of the beam endpoint

xve(t) = Fe

[
1

k1
+

1

k2
− 1

k2
exp

(
−k2t

δ

)]
(S4)

represented in terms of k1, k2, and δ by solving the mechanical model of the viscoelastic cantilever for
the identical load conditions. A direct comparison of Eqs.(S3) and (S4) leads to k1,2 = 3(I/l3)E1,2

and δ = 3(I/l3)ηi presented in equations (1) and (2) in the main text of the paper.

2 Double exponential decay basis for a measurable deflection

We continue with a summary of previously published derivations [2] and then move on to supple-
mentary derivations of formulas for the mechanical model parameters. The nanovire elasticity is
explained in the mechanical model framework by the parameters k1, k2. Both the damping coeffi-
cient δ, and the hydrodynamic drag γ are associated to dissipative processes. The final objective of
the supplementary material is to establish a methodological relationship between theoretical model
parameters k1, k2, δ and the bending recovery parameters measured or estimated by a regression
(A1, A2, τ1, τ2; see below).

Assume now that the location of the microsphere on the deflection trajectory is described by
the dynamic coordinate x(t). Neglecting the inertial forces, we obtain a system of two first order
differential equations, the combination of which yields a single second-order differential equation of
the form (

δγ
d2

dt2
+ [ k1(δ + γ) + k2γ]

d

dt
+ k1k2

)
x(t) = 0 , (S5)

which is formulated in terms of suitable initial conditions d2x/dt2
∣∣
t=0

and dx/dt
∣∣
t=0

. These con-
ditions must take into account the fact that the optical forces are maintaining the cantilever at a
constant deflection before the recovery process starts (t = 0). The solution can be determined by
the characteristic equation(

1

τ

)2

δγ −
(

1

τ

)
[ k1(δ + γ) + k2γ ] + k1k2 = 0 . (S6)

It is used to represent the system, and its eigenvalues (1/τ)1,2 to provide a pair of the relaxation
times

1

τ1,2
=

1

2δγ

[
k1(δ + γ) + k2γ ±

√
[ k1(δ + γ) + k2γ ]2 − 4k1k2δγ

]
. (S7)

This suggests that fundamental system of solutions exists { exp(−t/τ1), exp(−t/τ2)}, with the
possibility of constructing a superpositioned double-exponential decay x(t) = A1 exp(−t/τ1) +
A2 exp(−t/τ2) if the discriminant is positive and τ1,2 > 0). The properties of relaxation times

1

τ1τ2
=

k1k2
δγ

, (S8)

1

τ1
+

1

τ2
=

k1(δ + γ) + k2γ

δγ
(S9)
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can be deduced easily. From Eq.(S8) we simply have

δ =
k1k2
γ

τ1τ2 . (S10)

After substituting into Eq.(S9) we get

τ1 + τ2 −
k1
γ
τ1τ2 = γ

k1 + k2
k1k2

. (S11)

The right-hand side of the obtained connection has a more profound interpretation, which is linked
to the component of weighted average time that most of us provided and validated in our earlier
work [2]. As a result, we obtain the expression

τe = γ
k1 + k2
k1k2

=
τ1τ2(A1 +A2)

A1τ2 +A2τ1
. (S12)

Here we reintroduce τe as a distinguishable component of the weighted average time proportional to
γ. Combining Eq.(S11) and Eq.(S12) we obtain

k1 =
γ

τ1τ2
( τ1 + τ2 − τe ) = γ

A2τ
2
1 +A1τ

2
2

τ1τ2(A2τ1 +A1τ2)
. (S13)

Then, using Eq.(S11), we get first k2 as a function of k1 in the form

k2 =
k1

k1(τ1+τ2)
γ − k21τ1τ2

γ2 − 1
. (S14)

After that by substituting k1 we get

k2 = γ
(A2τ

2
1 +A1τ

2
2 )(A2τ1 +A1τ2)

A1A2τ1τ2(τ1 − τ2)2
. (S15)

Finally, we return to the formula for δ [see Eq.(S10)] and derive the expression

δ = γ
(A2τ

2
1 +A1τ

2
2 )2

A1A2τ1τ2(τ1 − τ2)2
(S16)

by inserting k1, k2 from Eqs.(S15) and (S13).
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