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1. Growth Parameters

The bare 3C-5iC NWs were grown on Si (100) substrates using a chemical vapor dep-
osition reactor at 1100 °C, using nickel nitrate [Ni (NOs)2] and carbon monoxide as a cata-
lyst and gaseous precursor, respectively. Using a cryopump deposition chamber with a
vacuum pressure of ~10-5 mbar and deposition current of 200 mA, a double blanket layer
of Nickel (Ni~5nm) and copper (Cu ~10 nm) was sputtered on 3C-5iC NWs/Si substrates.
Ni/Cu/3C-5iC NWs/Si samples were then annealed at a high temperature of ~1050 °C (25
°C/min) for an hour under the medium vacuum condition of ~10- mbar and then gradu-
ally cooled down to room temperature. Note that no final wet etch was performed on the
graphitized nanowires to remove residual metal catalysts and excess carbon, due to the
low adhesion of the nanowires to their substrate.
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Figure S1. Schematic demonstrating a catalytic graphitization process for epitaxial graphene growth on cubic silicon car-
bide (3C-5iC) nanowires on a silicon substrate.
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2. SiC and Graphene Material Properties

The frequency-dependent permittivity of SiC and graphene used as input to the
model are provided in Figure S2a,b. The dielectric function data of our 3C-SiC can also be
reproduced using a Lorentz oscillator/TOLO formalism:
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where &, represents the high-frequency permittivity while wry, and w;,, symbolize the
TO and LO phonon frequencies correspondingly, and y describes the damping constant
associated with optic phonon mode.

The effective dielectric function of graphene &,(w) was calculated using Equation

(52):
ioc(w)
wA

where o(w), & and A represent frequency-dependent conductivity of graphene, the
permittivity of free space, and the effective thickness of graphene, respectively. The con-
ductivity of graphene was modelled using the well-known Kubo formalism and is ex-
pressed by the sum of interband (0;,,¢,-4) and intraband (0;,¢e;) transitions [1].
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where kg and # are the Boltzmann and reduced Plank constant, respectively, e is an el-
ementary charge of an electron, Er Fermi energy and t is relaxation time, temperature
T =300K.
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3. Additional Simulation Models
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Figure S2. Dielectric function of SiC and graphene used in our simulations. (a) A comparison between measured permit-
tivity in 3C-SiC and the calculated permittivity using the TOLO model showing the best fit between measurement and
calculations when wgp=797 cm™! and w973 cm
(S1). (b) the calculated permittivity of graphene using Equation (52). Graphene was simulated as a monolayer with a
thickness of 0.33nm, Ep = 0.37 eV, and 7 = 370 fs.

used as input parameters in Equation

Four models were built and investigated, as shown in Figure S3a. We first built a SiC
NW/Si model, graphene/air/Si, followed by a graphene/SiC NW/Si model, and then fi-
nally, we created a graphene/oxide/SiC NW/Si model. The simulated absorbance for four

different models are shown in Figure S3b.
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Figure S3. Electromagnetic simulation model set up. (a) Schematic of four different simulated models: Bare SiC NW, gra-
phene/air, graphene/SiC NW, and graphene/oxide/SiC NW. (b) Simulated absorbance for four different models: bare SiC
NW, graphene/air, graphene/SiC NW, and graphene/oxide/SiC NW. The following geometry parameters were used: W =
500 nm, S = 200 nm, A = 120 nm, D = 100nm. For all four simulations, the total nanowire diameter is 50 nm. For the

graphene/oxide/SiC NW model, oxide shell thickness was 4 nm while SiC was 42 nm.
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4. Electric Field Distribution Profiles and the Magnitude of Electric Field Intensities
for when There Is No Oxide Layer between the Graphene Shell and the SiC Core
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Figure S4. Simulated electric field profiles and maps for graphene on SiC nanowires with no intermediate oxide layer. (a—
¢) Simulated electric field maps for modes M1 at 574 cm™, TO at 797 cm™land M2 at 1060 cm™, respectively. (d) The mag-
nitude of electric field intensity calculated along the cutline (yellow vertical dash lines in a,b) on graphene/SiC NW for
M1, TO and M2 modes.
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5. Electric Field Vector Analysis for M1 and M2 in Graphene/Oxide/SiC NW Model
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Figure S5. Electric field vectors for (a) M1 and (b) M2 in graphene/oxide/SiC NW model when oxide shell thickness is 4
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6. Simulated Absorbance for Different Orientations of the Incident Fields/TM Polar-
ized Wave’s Incident
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Figure S6. Absorbance for different orientations of the incident field for 4nm thick oxide layer (a) Hy, Ex, Ez (b) Hx, Ey,
Ez. The Ez component in both cases dominates the response. Lack of electric field component along the wire (Ex) signifi-

cantly reduces TO respo

nse in (b).

7. Nanowires Diameter Distributions
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Figure S7. Nanowires d

iameter distribution as estimated from SEM data of bare and graphitized 3C-5iC NWs samples

using Image | software [2]. (a) Bare 3C-5iC NWs, the average diameter is 48.6 nm (b) fully graphitized 3C-SiC NWs, the

average diameter is 44.8

nm.

8. Effect of the Diameter of SiC on the Absorption and Electric Field Enhancement

We performed a sensitivity study by varying the diameter of SiC and recording the
effect on the MIR response of the graphene/oxide/SiC NWs. We increased the diameter of
SiC from 10 nm to 90 nm and kept oxide shell thickness fix to 7.5 nm. The simulated ab-
sorption spectra and profile map at different SiC diameters are shown in Figure S8a,b. The
simulated absorbance revealed a redshift effect for both M1 and M2 when the diameter of
SiC is increased. For a smaller diameter of 10 nm, the TO mode is not noticeable in the
absorbance spectra as this is a bulk mode the intensity of which is entirely dependent on
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the size of SiC. We also noticed that the intensity of M1 becomes very weak for smaller
SiC diameters and disappears for diameters below 20 nm, while it is enhanced for larger
SiC diameters.

Moreover, we calculated the electric field enhancement for different SiC diameters.
As shown in Figure S8¢, the calculated peak electric field enhancement increases with in-
creasing SiC diameter and reaches the highest enhancement of ~27 when the diameter of
SiC is ~50 nm and dropping monotonically for diameters >50 nm. For M2, the field en-
hancement is higher for smaller SiC diameters, with the highest enhancement of 22 calcu-
lated for SiC diameter of 10 nm, while electric field enhancement drops significantly for
larger SiC diameters.
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Figure S8. Effect of the diameter of SiC on the absorption and field enhancement of graphene/oxide/SiC NW model. (a)
Simulated spectra absorption and (b) color profile map showing the spectra absorption profile at different SiC diameters,
(c) peak field enhancement at different SiC diameters. The simulation was performed by varying the diameter of SiC while
the oxide thickness and refractive index were kept fixed at 7.5 nm and 1.5.

9. Dynamic Tunability Analysis

Among the exciting properties of graphene is its electrostatic gate tunability of the
carrier concentrations/Fermi energy which makes the SPP modes supported in this mate-
rial dynamically tunable. The carrier concentrations in graphene can be increased from
~10" cm2 to 10 cm2as a consequence of the Dirac fermions linear dispersion in this ma-
terial [3]. To investigate the dynamic tunability of the modes in our graphene/oxide/SiC
NW system, we fixed the diameter of nanowires to 50 nm (thickness of oxide =7.5 nm and
diameter of SiC = 35 nm) and refractive index of oxide to 1.5. We also assumed a constant
relaxation rate T = 370 fs in Equation (S5). Then we performed the simulation at varying
Fermi energy (Er) ranging from 0.212 eV to 0.40 eV according to the reported value of
carrier concentrations in EG on flat 3C-SiC/Si [4]. The simulated absorbance spectra and
the absorption profile map showing the tunability of M1 and M2 in graphene/oxide/SiC
NW are shown in Figure S9a,b. A blueshift effect of ~150 cm™! for M1 and ~128 cm™! for
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M2 was realized by increasing graphene’s Fermi energy from 0.212 eV to 0.4 eV. Moreo-
ver, the calculated E-field enhancement at the resonance frequencies for different Er re-
vealed up to ~26 enhancement of the field for M1 corresponding to graphene’s Er of ~0.3
eV (Figure S9c). It was also noticed that the E field for M2 is enhanced as the Erincreases
with maximum field enhancement of ~10 realized when the Erof graphene is 0.4 eV.
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Figure S9. Dynamic tunability analysis for M1 and M2 in graphene/oxide/SiC NW. (a) The simulated absorptions spectra
showing a blue shift effect on M1 and M2 when the Fermi energy (Er) in graphene is increased, (b) color profile map
showing the spectra absorption profile at different graphene’s Fermi energy Er, (c) peak field enhancement for different
Fermi energy showing high peak field enhancement of ~26 for M1 and ~10 for M2.
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