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A. Equations for calculating the surface conductivity of graphene 

The optical response characteristics of graphene can be completely described by its surface 

conductivity, σg [1]. When both the external magnetic field and excitonic gap are zero, σg is isotropic [2] 

and its expression can be written as [2-4] 

intra inter( , , , ) ( , , , ) ( , , , )g c c cσ ω μ T σ ω μ T σ ω μ T= +   , (A1) 

where the intra-band term of surface conductivity is 
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the inter-band term of surface conductivity is 
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ω is the angular frequency of the incident wave, −e is the charge of an electron, ћ = h/(2π) is the 

reduced Planck’s constant, kB is Boltzmann’s constant, and μc is the chemical potential of graphene. 

The temperature and charged particle scattering rate are set as T = 300 K and Г = 0.1 meV, respectively. 

σg can be flexibly picked by changing μc via the gate voltage, V. The dependence of μc on V can be 

expressed as μc = sgn(n)ћvF(π|n|)1/2 [2], where vF is the Fermi velocity and n = Cg(V + V0)/e is the 

charge density. Cg and V0 are the gate capacitance and offset voltage, respectively. 

Notably, σinter can be ignored when ω is too small to produce inter-band transitions in doped 

graphene. Specifically, the surface conductivity of graphene is dominated by the σintra for incident 

waves in the terahertz (THz) to mid-infrared spectral region, at room temperature, and under typical 

doping levels [1]. Furthermore, if the condition μc ≫ kBT is further fulfilled, the σg can be expressed by 

a Drude-like model as follows: 
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Figure S1. Dependences of surface conductivity of graphene on the angular frequency of incident 

waves (a) and the chemical potential of graphene (b), respectively. The red, green, and blue lines 

represent the surface conductivities calculated using the sum of intra-band and inter-band terms, only 

the intra-band term, and the Drude-like model, respectively. Moreover, the solid and dashed lines 

indicate the real and imaginary parts of the surface conductivity, respectively. μc = 1.0 eV for (a) and ω 

= 1.78 × 1014 rad/s for (b). 

 

As shown in Figure S1, the red, green, and blue lines obtained using Eqs. (A1), (A2), and (A4), 
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respectively, are coincident; thus, the inter-band term is negligible, and the Kubo formula can be 

replaced by the Drude-like model for simplification. The Drude-like simplified model is very helpful 

for analytically studying both the quantum-corrected model (QCM) for the tunneling effect occurring 

in the extremely thin dielectric spacer and the dispersion relations of gap surface plasmon polaritons 

(GSPPs), which are presented in Sections D and F, respectively. 

 

B. Derivations of the dispersion equation of GSPPs supported by the GNRGW 

When two sheets of graphene are very close, the SPPs supported by graphene will couple with each 

other strongly and form the GSPPs. The GSPPs supported by the graphene nanoribbon gap waveguide 

(GNRGW) are the transverse magnetic (TM) modes, so the x-component of the magnetic field for 

GSPPs propagating along the z-direction can be written as 
( )( , , , ) ( , ) i t z

xH x y z t f x y e    , (B1) 

where β = β1 + iβ2 is the complex propagation constant. The corresponding Helmholtz equation can be 

written as 
2 2
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where ε is the relative permittivity of medium, k0 = (2π)/λ is the wavenumber, and λ is the free-space 

wavelength. Using the method of separation of variables, Eq. (B1) can be changed into 
( )( , , , ) ( ) ( ) i t z

xH x y z t X x Y y e    . (B3) 

Substituting Eq. (B3) into Eq. (B2) yields 
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Since the left and right sides of the equal sign in Eq. (B4) are functions of the variables y and x, 

respectively, there is an underdetermined constant, qx
2, that can make it true, namely 
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Eq. (B5) can be further decomposed into two equations: 
2

2
2

d ( )
+ ( ) 0

d x

X x
q X x

x
 , (B6) 

and 
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Electromagnetic fields are confined within the lateral range covered by the graphene nanoribbon 

(GNR), and the square root of the eigenvalue, qx, can be solved by 

=x

m
q

L

 
, (B8) 

where m is a natural number characterizing the number of wave-nodes with zero intensity along the 

x-direction, L is the width of the GNR, and φ is a phase shift caused by the reflection at the boundaries. 

The derivation related to φ is shown in Section C. Eq. (B8) ensures that when the GSPPs propagate 

over a period (with two reflections) along the x-direction, the phase change is m2π for the m-th-order 

mode. In particular, for m = 0, the reflection phase shift with a negative value exactly compensates the 

phase qxL in Eq. (B8), which ensures that the fundamental mode can be guided. The solution of Eq. (B7) 

can be written as 
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where Aj (j = 1, 2, 3, 4, or 5) and Bl (l = 2, 3, or 4) are eight undetermined mode coefficients. kj = (β2 − 

εjk0
2 + qx

2)1/2, in which εj is the relative permittivity at the corresponding region in Figure 1(b) (see the 

main manuscript). Based on Maxwell’s equations, the electric field along z-axis of TM modes, Ez (x, y, 

z, t), can be solved using 
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where ε0 is the permittivity of vacuum. By further employing the continuities of the tangential field 

components Hx (x, y, z, t) and Ez (x, y, z, t) at interfaces y = d/2 + δ, d/2, − d/2, and − d/2 − δ, the 

following dispersion equation is obtained 
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where 
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and ξj = kj/εj. 

 

C. Derivations of the reflection phase shift 

When GSPPs propagate along the x-direction in a waveguide consisting of two infinitely extended 

graphene sheets (GSs), as shown in Figure S2(a), the main component of the magnetic field lies along 

the z-axis, which can be written as 
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where Cj (j = 1, 2, 3, 4, or 5) and Dl (l = 2, 3, or 4) are undetermined mode coefficients. ϕ = e–i(ωt – px) 

and hj = (p2 − εjk0
2)1/2, respectively, where p is the complex propagation constant along the x-direction. 

Based on Maxwell’s equations, the y-component of the electric field can be obtained using 

0
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When the upper GS is replaced by a GNR of a finite width, the GSPPs arriving at the boundaries of 

the GNR will be reflected back into the lateral area covered by the GNR, as shown in Figure S2(b); 

thus, the guided GSPPs change into the localized gap plasmons (LGPs). The continuities of the 

tangential fields at the boundaries for calculating the complex reflection coefficient, r, can be written as 

[5] 

(1 ) I O
y yr E E  , (C3) 

and 

(1 ) I O
z zr H H  , (C4) 

where O
yE  and O

yH  are the y-component of the electric field and the z-component of the magnetic 

field outside the GNR, respectively. Expressing O
yE  in terms of Fourier-transformed quantities, 
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y y yE g k e dk
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By substituting Eq. (C3) into Eq. (C5), the expression of g(ky) can be written as  
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Then, the magnetic field along z-axis can be written as 
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Taking the complex conjugate of Eq. (C4), multiplying it with Eq. (C3), and integrating the variable 

y yields 
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Substituting Eq. (C10) into Eq. (C9), the complex reflection coefficient can be obtained as follows: 
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When r is determined, the reflection phase shift upon the boundaries, φ, can be solved using the 

following equation 

2

1

arctan( )
r

r
  , (C13) 

where r1 and r2 are the real and imaginary parts of r, respectively. The cutoff width of the GNR for 

each mode can be further predicted by 
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which agrees well with the numerical simulation. 

 

Figure S2. Distributions of the normalized electric field along the y-axis of GSPPs supported by the 

infinitely extended double-layer GSs (a) and the GNRGW (b), respectively. The locations of graphene 

are indicated by the green lines. This representation is also adopted in Figures S5 and S10(b). 

 

D. QCM for the tunneling effect 

The thickness of the dielectric spacer adopted is only a few nanometers; thus, the quantum tunneling 

effect of charged carriers across the spacer is further discussed using the QCM [6-10]. The quantum 

tunneling effect is manifested as inducing effective conductivity in the deep subwavelength nanogap 

and the dielectric spacer is regarded as a hypothetical metal with an effective electron density and 

resistance. Then, the dielectric function of the spacer is represented by a Drude-like model [9]: 

1

2

3 3 3( ) ( )
[ ( )]

d
pd

g
g

ω
ε d ε ε ε e

ω ω iγ d

-

¥= + - -
+

, (D1) 

where ε3g and ε3 are the relative permittivities of the dielectric spacer with and without the quantum 

tunneling effect, respectively. ε∞ and ωp are the background permittivity and plasma frequency of 

graphene. The parameter d1 = 0.08 nm. The damping rate, γg (d), is a function of the spacer thickness, 

which can be expressed as 

2( ) 2
d

d
gγ d e= , (D2) 

where d2 = 0.04 nm. Substituting Eq. (A4) into εg = 1 + iσg/(ωε0δ), 
2 2
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( 2 )
c
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
. (D3) 

The Drude model of the relative permittivity of graphene can be written as εg = ε∞ − ωp
2/[ω(ω + 

i2Г)]; thus, ε∞ = 1 and ωp
2 = (e2μc)/(ε0δπћ2). Then, the dependences of the relative permittivity of the 

dielectric spacer on the thickness of the spacer can be calculated using Eq. (D1), as shown in Figure S3. 

When d ≥ 0.8 nm, the blue and red lines coincide completely; thus, the quantum tunneling effect can be 

ignored. 
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Figure S3. Dependences of the real (solid lines) and imaginary (dotted lines) parts of 3g on d. The blue 

and red lines are obtained by the QCM and the classical method (i.e., ignoring the quantum tunneling 

process), respectively. 

 

The dependences of β on d are further calculated with and without considering the quantum 

tunneling effect, as shown in Figure S4. The two results agree well with each other for d ≥ 0.8 nm. 

However, when d < 0.8 nm, both the real and imaginary parts of β acquired by the QCM are larger than 

the classical ones, which are consistent with the previously observed phenomena that the quantum 

tunneling effect is dominant in the sub-nanometer-scale dielectric gap [10, 11]. 

 

Figure S4. Dependences of the real (a) and imaginary (b) parts of β on d for the fundamental GSPP. 

The blue and red lines are obtained by the QCM and the classical method, respectively. The solid and 

dashed lines are obtained by the analytical model and COMSOL Multiphysics, respectively. This 

notation is also used in Figures S6(a) and S11. The enlarged image in (b) is a close-up view when the 

quantum tunneling effect can be ignored. 

 

E. Evolutions from GSPPs to edge plasmon modes 

The distributions of the normalized electric fields, |E|, for GNRs with different widths are calculated 

for a given spacer thickness d = 5.0 nm, as shown in Figure S5. When L decreases from 10 to 2 nm, the 

GSPPs sustained in the dielectric spacer covered by the GNR gradually fade and the edge plasmon 

mode with more energy concentrated at the ends of the GNR becomes dominant. Thus, the deviation 

between the analytical and simulated results increases gradually. The geometry of the GNRGW is 

unchanged along the propagation direction; thus, the mesh on the cross section is constructed and then 

swept along the propagation direction in the simulation. The graphene layer on the cross section is first 

divided along its boundary and then the "mapping" method is used to divide the mesh of the surface. 
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Figure S5. Distributions of the normalized electric fields for L = 50 nm (a), L = 10 nm (b), L = 5 nm 

(c), and L = 2 nm (d), respectively. 

 

F. Simplifications of the dispersion equation of the GSPPs 

Graphene is modeled as an infinitely thin surface characterized by its surface conductivity, σg, and its 

thickness, δ, is ignored to simplify the dispersion equation (B11), which can be written as [1] 
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where it has taken the same natures for the GNR and GS. To further simplify Eq. (F1), ε1 = ε3 = ε5 is 

adopted, then 
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By taking the approximation of 3
31 k de k d-- » , Eq. (F2) can be reduced to 
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where the charged particle scattering rate of graphene is ignored and the discussion is restricted to the 

real part of β. 
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   holds for the fundamental GSPPs (m = 0); thus, Eq. (F3) can 

be written as 
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Eq. (F4) clearly shows that β1 increases linearly with ω; thus, the corresponding group velocity vg = 

dω/dβ1 is a constant. The analytical results (red solid line) calculated using Eq. (F4) are consistent with 

the simulated results (red dashed line) obtained using COMSOL Multiphysics, as shown in Figure 

S6(a). Since the electromagnetic energy is mainly concentrated in the dielectric spacer with a fixed 

refractive index between the two sheets of graphene, the GSPPs exhibit dispersionless propagation 

characteristics. The reflection phase shift, φ, is much smaller than , as shown in Figure S6(b); thus, qx 

for higher-order GSPPs is much larger than that for the fundamental mode. The dispersion behavior of 

the first-order mode (green solid line) is calculated using Eq. (F3), which also agrees well with the 

simulated results (green dashed line). 
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Figure S6. Dependences of β1 (a) and reflection phase shift (b) on the angular frequency of incident 

waves. The width of GNR is L = 200 nm and the relative permittivities of the dielectric materials are 

adopted as ε1 = ε3 = ε5 = 1. 

 

 

G. Time-domain envelope profiles of the pulses in a GNRGW 

 
Figure S7. Time-domain envelope profiles of the input and output pulses in a GNRGW with a straight 

GNR. The amplitude of the output pulse is 10% smaller than that of the input pulse, while their full 

widths at half maximum (FWHMs) are the same, which agree well with the results in the frequency 

domain. 
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H. Robustness of the GNRGW against the GNR shape 

 
Figure S8. Frequency- (a) and time-domain (b) envelope profiles of the input and output pulses in a 

GNRGW with a wedge-shaped GNR. 

 

 
Figure S9. Frequency- (a) and time-domain (b) envelope profiles of the input and output pulses in a 

GNRGW with a curved GNR. 

 

I. Crosstalk analyses for the GNRGW 

The crosstalk of the GNRGW is further analyzed by replacing the GNR in Figure 1 in the main 

manuscript with two identical GNRs, whose cross section is shown in Figure S10(a). GSPPs parking in 

the dielectric spacer under the two GNRs can couple with each other to form the symmetric and 

anti-symmetric modes, as shown in Figure S10(b). To quantify the coupling strength between the two 

channels, the dependences of β of the two modes on the separation, s, are shown in Figure S10(c). As s 

decreases, the coupling strength increases, resulting in an increased difference between β of the two 

modes. 

The coupling length, LC, defined as LC = π/|β1,s − β1,as| [12, 13], is applied to measure the crosstalk, 

which is the required length for transferring all the power from one channel to the other. β1,s and β1,as 

represent the real parts of β of the symmetric and anti-symmetric modes, respectively. The dependence 

of the normalized coupling length, LC/Lp, on s is shown in Figure S10(d), where Lp denotes the 

propagation length of the GSPPs without the coupling effect. Generally, the coupling between two 
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adjacent channels can be ignored when LC/Lp > 1 [13]. LC/Lp reaches 1 at s  35 nm; thus, the GNRGW 

array with a channel separation of 40 nm in the main manuscript shows extremely weak crosstalk 

between adjacent components. 

 
Figure S10. (a) The cross section of the proposed coupling configuration. (b) The distributions of 

normalized electric fields along y-axis for the symmetric (i) and anti-symmetric (ii) modes. 

Dependences of the complex propagation constant (c) and normalized coupling length (d) on the 

separation between two GNRs. 

 

J. Modes properties with respect to medium’s permittivity 

The dependences of the complex propagation constant on relative permittivities of the dielectric spacer 

and substrate are shown in Figures S11(a) and (b), respectively. Both β1 and β2 increase as the relative 

permittivities increase, but ε3 has a much greater impact on β than ε5, owing to most of the 

electromagnetic energy being concentrated in the dielectric spacer. The GSPPs can be guided by 

various GNRGWs with different spacers and substrates, which indicates their good compatibility with 

other planar photonic devices. 

 
Figure S11. The dependences of the complex propagation constant on the relative permittivities of the 

dielectric spacer (a) and substrate (b), respectively. 
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