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Figure S1. (a) XRD pattern of CoFe2O4 and Zn0.25Co0.75Fe2O4 NPs; (b) TEM micrograph and size 
distribution of CoFe2O4 NPs. 

Magnetic interparticle interactions were investigated by measuring the isothermal 
remanent magnetization (IRM) and the direct current demagnetization (DCD) [1,2]. 



 

MIRM(H) was measured on the demagnetized sample applying a set of increasing fields 
(up to 10 kOe), removing them and recording the remanent magnetization after each iter-
ation. MDCD(H) was measured saturating first the sample, applying a set of increasing re-
verse fields and recording the remanent magnetization after each iteration. According to 
the Stoner–Wohlfarth model for an assembly of non-interacting randomly oriented MNPs 
with uniaxial anisotropy the two remanent magnetization curves are correlated by the 
following equation: MDCD(H) = 1 – 2·MIRM(H). The effect of interparticle interactions can be 
evaluated by the Kelly equation [3]:  

 

ΔM(H) = MDCD(H) – 1 + 2·MIRM(H) (1) 

where ΔM allows one to estimate the level of interactions. ΔM = 0 for an ideal situation 
with the absence of interactions. A negative value indicates the predominance of dipolar 
interactions, whereas a positive value indicates the predominance of exchange interac-
tions. CFO powder sample shows a negative deviation with the intensity of about ~0.1 
that suggests that in powder sample the interparticle dipolar interactions are dominant. 
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Figure S2. (a) Room temperature (~300 K) M-H loop (b) ΔM-plot of CoFe2O4 and Zn0.25Co0.75Fe2O4 NPs in form of powder. 
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Figure S3. XRD pattern of BaTiO3 particles. 
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Figure S4. Comparison of XRD patterns for (a) random and oriented CFO/PVDF and CFO/PVDF-TrFE nanocomposites; 
(b) nanocomposites with 5 and 10% of BaTiO3 particles; (c) ZCFO/PVDF-TrFE nanocomposite. 
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Figure S5. Optical images of aligned clusters of CFO NPs in (a) PVDF-TrFE and (b) PVDF polymers. 

The pore depth was estimated using the WSxM software [4]. Pore depth histograms were 
plotted using flood functions. By choosing the function "Find holes", it is possible to dis-
play all points below a certain height. By default WSxM sets flooding images by using the 



 

topography image and showing holes in different colours and holes with a height larger 
than the one selected here will neither be displayed nor considered during calculus. Next, 
a function was used to create a histogram of height. The maximum height histogram 
shows a histogram of the maximum value of the difference between the cutoff height and 
the point's height.  

 
(a) Rms = 21 nm 

 
(b) Rms = 33 nm 
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(c) Pore size (median) = 30 nm; σ = 12 
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(d) Pore size (median) = 100 nm; σ = 64 

Figure S6. Atomic force microscopy (AFM) images of (a) PVDF-TrFE/CFO and (b) PVDF/CFO NCs; histograms of the 
pore depth distribution obtained using the WSxM program for (c) PVDF-TrFE/CFO and (d) PVDF/CFO NCs. The median 
value and standard deviation (σ) of log-normal distribution are presented. 

 

Topography MFM image 
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Figure S7. Magnetic force microscopy (MFM) images of PVDF-TrFE/CFO nanocomposite evaporated in the absence of magnetic field: 
(a) topology and (b) MFM signals. 



 

 

  

 

 
Etotal = 0.365×20-20 J 

Estray fields = 0.365×20-20 J 
(a) 

 

 
Etotal = 0.524×20-20 J 

Estray fields = 0.523×20-20 J 
(b) 

 

 

  

 

 
Etotal = 8.10×20-20 J 

Estray fields = 0.295×20-20 J 
(c) 

 
Etotal = 31.1×20-20 J 

Estray fields = 0.088×20-20 J 
(d) 

 

Figure S8. Results of FEMM simulation of magnetic induction (B) for different configurations of initial magnetization of 
particles aggregates: (a) “head-to-tail” magnetization state; (b) “head-to-head” magnetization state; (c) one aggregate has 
a close structure and the second is uniformly magnetized; (d) two aggregates have close structures. 

   

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  



 

References 

1.  Peddis, D.; Jönsson, P.E.; Laureti, S.; Varvaro, G. Magnetic interactions: A tool to modify the magnetic properties of materials 

based on nanoparticles. In Frontiers of Nanoscience; Binns, C., Ed.; Elsevier B.V: Oxford, UK, 2014; Vol. 6, pp. 129–188 ISBN 

9780080983530. 

2.  Garcı́a-Otero, J.; Porto, M.; Rivas, J. Henkel plots of single-domain ferromagnetic particles. J. Appl. Phys. 2000, 87, 7376. 

3.  Kelly, P.E.; O’Grady, K.; Mayo, P.L.; Chantrell, R.W. Switching mechanisms in cobalt-phosphorus thin films. IEEE Trans. 

Magn. 1989, 25, 3881–3883. 

4.  Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. WSXM: A software for 

scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007. 

 


	References

