Synchrotron radiation spectroscopy and transmission electron microscopy techniques to evaluate TiO₂ NPs incorporation, speciation and impact on root cells ultrastructure of *Pisum sativum* L. plants

Simonetta Muccifora¹, Hiram Castillo-Michel², Francesco Barbieri¹, Lorenza Bellani^{1,3}, Monica Ruffini Castiglione⁴, Carmelina Spanò⁴, Ana E. Pradas del Real², Lucia Giorgetti³, Eliana L. Tassi^{5*}

¹ Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy

² European Synchrotron Radiation Facility, Beamline ID21, 38100 71 Av. Rue des Martyrs 38000 Grenoble, France;

³ Department of Biology, University of Pisa, Via Ghini 13, 56126 Pisa, Italy

⁴ Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy

⁵ Research Institute on Terrestrial Ecosystems, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy

*corresponding author: elianalanfranca.tassi@cnr.it (Eliana L. Tassi)

number of pages: 09; Figures: 2; Tables: 3

100µm

10. Column

Ti fluorescence counts

100µm

Figure S1 Tricolor and heat of μ XRF maps showing the Ti distribution in all samples. Arrows indicate points where μ XANES were collected and numbers correspond to spectrum number indicated in Table S3. Red squares localize the magnified areas used for Ti spots focalization: (A) soil, (B) Bs, (C) control root, (D), (E) Ana800 roots, (F) Rut800 root, (G) Mix800 root, (H) SMP800 root.

Figure S2 Pre-peak spectral from theoretical spectra of (a) Ti sites with different coordination numbers (4c, 5c, 6c, 5-6c); (b) spectral comparison of c-Ti with the theoretical spectra from Ti₄(FeO₄)₃ (mvc-14970, cubic), Ti₃Fe₃O (mp-504733, cubic), see Table S1 for more details.

Table S1 List of Ti-compounds used to obtain theoretical XANES spectra from the https://materialsproject.org/. The coordination number (CN) was obtained by observation of the cell

unit structures. The ID number can be used to access all the structural information deposited in this data base.

				Point	Crystal
Formula	ID	CN	Tag	Group	System
Na2TiSiO5	mp-621926	4c	disodiumtecto-titanosilicate	4/m	tetragonal
Ba2TiO4	mp-3397	4c	dibarium titanate	2/m	monoclinic
Na ₆ Ti ₂ O ₇	mp-777423	4c	none	2/m	monoclinic
Na ₆ Ti ₂ O ₇	mp-778364	4c	none	2/m	monoclinic
Na ₂ Ti ₂ O ₅	mp-779729	4c	none	mm2	orthorhombic
Ti ₂ FeO ₅	mp-31857	5-6c	iron dititanium oxide	mmm	orthorhombic
TiFe2O5	mp-24977	5-6c	pseudobrookite	mmm	orthorhombic
			rubidium 13-		
Rb2Ti6O13	mp-540784	5-6c	oxohexatitanite	2/m	monoclinic
Sr4Ti5(Si2O11)2	mp-558553	5-6c	matsubarite	2/m	monoclinic
Na2Ti3O7	mp-3488	5-6c	disodium titanate	2/m	monoclinic
Na ₂ TiSiO ₅	mp-6138	5c	natisite	4/mmm	tetragonal
			disodium tecto-		
Na2TiSiO5	mp-555976	5c	titanosilicate	mm2	orthorhombic
Ba2Ti(SiO4)2	mp-6081	5c	barium titanium silicate dipotassium dititanium	4mm	tetragonal
K2Ti2O5	mp-28075	5c	oxide	2/m	monoclinic
Rb ₂ TiO ₃	mp-5403	5c	dirubidium titanate	mmm	orthorhombic
KNaTiO ₃	mp-560767	5c	potassium sodium titanate	2/m	monoclinic
Ba ₂ Ti(GeO ₄) ₂	mp-6289	5c	dibarium titanogermanate	4mm	tetragonal
Na ₂ Ti ₂ O ₅	mp-779477	5c	none	2/m	monoclinic
NaTiO ₃	mp-977123	5c	none	m-3m	cubic
TiFeO₃	mp-19270	6c	ilmenite	3m	trigonal
TiFe2O5	mp-566709	6c	di-iron(III) titanate	2/m	monoclinic
Ti(FeO ₂) ₂	mp-33684	6c	none	mmm	orthorhombic
TiFe2O5	mp-19255	6c	di-iron(III) titanium oxide	2/m	monoclinic
TiFeO ₃	mp-25002	6c	iron(III) titanate	mmm	orthorhombic
TiFeO ₃	mp-19074	6c	iron(III) titanate	mmm	orthorhombic
Ti ₄ (FeO ₄) ₃	mvc-14970	6c	none	m-3	cubic
Ti ₃ Fe ₇ O ₁₅	mp-34287	6c	none	m	monoclinic
Ti ₃ Fe ₃ O	mp-504733	6c	iron titanium oxide	m-3m	cubic
Ti(FeO ₂) ₄	mp-35482	6c	none	2/m	monoclinic
Ti ₂ Fe ₄ O ₉	mp-766757	6c	none	m	monoclinic
Na2TiSi4O11	mp-556283	6c	sodium titanium silicate	4/m	tetragonal
Na2Ti2Si2O9	mp-5996	6c	ramsayite	mmm	orthorhombic
NaTi2O4	mp-29356	6c	none	mmm	orthorhombic
Na4Ti5O12	mp-555678	6c	none	-3	trigonal
TiO ₂	mp-390	6c	anatase	4/mmm	tetragonal
TiO ₂	mp-2657	6c	rutile	4/mmm	tetragonal
TiO ₂	mp-1840	6c	brookite	mmm	orthorhombic

Table S2 Confusion matrix from the logistic regression model performed with the experimental data from plants, soils and biosolid. The target category used was created from the PCA groups obtained from the data and named Rut (rutile like), Ana (anatase like), Ilm (ilmenite like) and s-Ti (Ti-containing compound from soil).

	Predicted					
		Ana	Ilm	Rut	s-Ti	sum
	Ana	38	1	1	0	40
	Ilm	0	10	0	2	12
Actual	Rut	2	0	14	0	16
	s-Ti	1	0	0	4	5
	sum	41	11	15	6	

Table S3 List of spectrum numbers used to indicate the locations in the μ XRF map (Figure S1 A-H). Treatment and phase (according to PCA grouping is included). Missing numbers are from spectra used in the PCA model but specific map location was not possible to be attributed; * indicates spectra from soil sample that was analyzed a second time, the spectra was considered as another point in the sample as this was repeated several hours after the relocation precision is then not precise to μ m.

Spectrum #	Treatment	Phase	Figure S1
1	soil	s-Ti *	(A)
2	soil	s-Ti *	(A)
3	soil	Ilm	(A)
4	soil	Ilm	(A)
5	soil	s-Ti	(A)
6	soil	Ana	(A)
7	soil	Ana	(A)
8	soil	Ana	(A)
9	soil	Rut	(A)
10	soil	Rut	(A)
11	soil	Rut	(A)
12	soil	Ana	(A)
13	soil	Ana	(A)
14	soil	Ilm	(A)
15	soil	Ana	(A)
16	biosolid	Rut	(B)
17	biosolid	Rut	(B)
18	biosolid	Ana	(B)
19	biosolid	Rut	(B)
20	biosolid	Rut	(B)
21	biosolid	Rut	(B)
22	biosolid	Rut	(B)
23	biosolid	Ana	(B)
24	biosolid	Ilm	(B)
25	biosolid	Ilm	(B)
26	biosolid	Ilm	(B)
27	biosolid	Ilm	(B)
28	С	Ana	(C)
29	С	Ilm	(C)
30	С	Ana	(C)
31	С	Ana	(C)
32	С	Ana	(C)
	С	Ana	(C)
34	Ana800	Ilm	(D)
35	Ana800	Ana	(D)
36	Ana800	Ilm	(D)

37	Ana800	Ana	(D)
38	Ana800	Ilm	(D)
39	Ana800	Ana	(D)
40	Ana800	Rut	(D)
41	Ana800	Ana	(D)
42	Ana800	Ilm	(D)
43	Ana800	Rut	(E)
44	Ana800	Ana	(E)
45	Ana800	Ana	(E)
46	Ana800	Ana	(E)
47	Ana800	Ana	(E)
48	Ana800	Ana	(E)
49	Ana800	Ana	(E)
50	Ana800	Ana	(E)
51	Ana800	Ana	(E)
	Ana800	Ana	(E)
	Ana800	ilm	(E)
	Ana800	Rut	(E)
	Ana800	Ana	(E)
56	Rut800	Ana	(F)
57	Rut800	Ana	(F)
58	Rut800	Ana	(F)
59	Rut800	Rut	(F)
60	Rut800	Rut	(F)
61	Rut800	Rut	(F)
62	Rut800	Rut	(F)
63	Mix800	Ana	(G)
64	Mix800	Ana	(G)
65	Mix800	Ana	(G)
66	Mix800	Ana	(G)
67	SMP800	Ana	(H)
68	SMP800	Ana	(H)
69	SMP800	Ana	(H)
	SMP800	Ana	(H)
71	SMP800	Ana	(H)