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S1. Experimental data 

Data of Fig 4(a,b) in manuscript are taken from taken from Ref. [1], for the 

Polyolefin/Carbon black and Polyolefin/fumed silica nanocomposites. 

Composites were formed with the polymer matrix. Carboxy-telechelic polyolefin 

prepolymers were synthesized in the presence of fumed silica and carbon black 

fillers to yield polyolefin elastomers with significantly enhanced mechanical 

properties. The filled elastomers based on polyolefin prepolymer have excellent 

hydrophobicity, a wide operating temperature range, and a high elongation at 

break and are used for a wide range of applications, including sealing and joint 
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technologies. The resulting nanocomposites with only 4 wt.% of inclusions of 

carbon black or fumed silica nanoparticles exhibit 40–50% Young’s modulus 

improvement. [1] 

Data of Fig 4 (c,b) in manuscript are taken from  Ref. [2], corresponds to 

poly(ether-ether-ketone) (PEEK) composites reinforced by nanosized SiO2 and 

Al2O3 fillers (PEEK/Al2O3 and PEEK/SiO2). The inclusion of much cheaper (in 

comparison with carbon nanotubes CNT) nano SiO2 or Al2O3 particles (with 

diameters ∼15–30 nm) into PEEK is of basic interest for the purposes of 

processability and mechanical enhancement. The resulting nanocomposites with 

10 wt.% SiO2 or Al2O3 nanoparticles exhibit Young’s modulus improvement of 

30%. [2] 

Data of fig 4(e) corresponds to polyamide–titania nanocomposites 

(PTMHMTA/TiO2), taken from Ref. [3]. Polyamides are the first engineering 

thermoplastic polymers ever commercially produced. These polymers have a lot 

of applications as fibers, amorphous and crystalline plastics, and adhesives. On 

the other hand, titania has high melting point, resistance to attack by acids and 

alkalis and good mechanical properties to reinforce the polyamide matrix. At it 

is clearly showed when the TiO2 content is 10 wt%, the Young’s modulus of 

PTMHMTA/TiO2 increases by 36% compared to corresponding of PTMHMTA. 

[3] 
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Data of fig 4(f) corresponds to the composite (P(MMA-co-MTC)/SiO2) formed 

with SiO2 nanoparticles without surface modification, taken from Ref. [4]. The 

polymer matrix was intentionally assembled by a promising method to improve 

the particle dispersion as well as their interfacial adhesion through electrostatic 

interaction without surface modification. The inclusion of 10 wt% of cationic 

functional comonomer 2-(methacryloyloxy) ethyltrimethylammonium chloride 

(MTC) into polymer matrix methyl methacrylate (PMMA) optimize considerable 

their mechanical reinforcement. As is clearly showed at the figure 4(f) when the 

MTC content is 10 wt% and SiO2 content is only 1 wt%, the Young’s modulus of 

P(MMA-co-MTC)/SiO2 increases by 35% compared to corresponding P(MMA-co-

MTC) which represent an optimal experimental route to produce materials 

having less costly with higher application. [4] 

S.2 Derivation of eq.5 

On the basis of percolation concepts as discussed in main text, the ratio 𝜙eff ϕg⁄  

can be estimated by the following relationship: 

       𝜙eff ϕg =⁄  A(ϕ − ϕp)
α                                                                        (s2.1) 

when 𝜙 → 𝜙𝑔 the effective fraction of particles 𝜙eff → 𝜙𝑔 leads to: 

             A =  1/(ϕg − ϕp)
α                                                                (s2.2) 

Substituting s2.2 into s2.1: 
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                   𝜙eff = ϕg (
ϕ−ϕp

ϕg−ϕp
)
𝛼

                                              (s2.3)  

 

Figure S2. Schematic illustration of the spherical transformation. The diameter of the hard core, 

the length of the cylinder and the contact shell are denoted by D, L and 𝜆 respectively. The 

spherical case is recovered when 𝐿 → 0 which gives rises 𝛼 = (𝑟 𝑅⁄ ) being r the particle thickness 

interface and R the radius of the particle. 

 

S.3 Derivation of eq.6b 

The theoretical approach developed by Schilling et al [5] gives rise to the 

following general equation for the percolation threshold: 

    𝜙𝑝(𝛾, 𝛼) =
2(1+𝜉(𝛾,𝛼))−2(1+

𝜉(𝛾,𝛼)

2
)

1
2

3(1+
2

3
𝜉(𝛾,𝛼))

                                                                      (s3.1) 

    𝜉(𝛾, 𝛼) =
(1+

2

3
(
1

𝛾
))

1

𝛾

8

3𝛾2((1+𝛼)3−1)+
4

𝛾
((1+𝛼)3−1)+𝛼

                                                                (s3.2) 

where L

D
 =  defines the aspect ratio of the spherocylindrical particles and the 

connectivity variable  is defined as 1
D


 = −  (see figure S3). 
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Eq.6b of the manuscript is obtained by passing the limit 𝐿 → 0  in eq (s3.2) which 

results in: 

             𝜉𝑠𝑝ℎ𝑒𝑟𝑒 = lim
𝛾→0

𝜉(𝛾, 𝛼) =
2

8((1+𝛼)3−1)
=

1

4((1+(𝑟 𝑅⁄ ))
3
−1)

                                     (s3.3) 

S.4 Derivation of eq.7 and numerical example 

Applying Napierian logarithm in both sides of eqs2.3 yields: 

    𝑙𝑛(ϕeff) = 𝑙𝑛(ϕg) + α𝑙𝑛(ϕ − ϕp) − α𝑙𝑛(ϕg − ϕp)                                          (s4.1) 

Differentiating with respect to ϕ 

     
𝑑𝑙𝑛(ϕeff)

𝑑ϕ
=

α

ϕ−ϕp
+

dα

𝑑ϕ
𝑙𝑛(ϕ − ϕp)                                                                       (s4.2) 

For each composite we will only have a single exponent value, i.e. the percolation 

exponent will not depend of the particle concentration (𝑑𝛼 𝑑𝜙⁄ ) → 0 and 

consequently: 

α =
𝑑𝑙𝑛(ϕeff)

𝑑ϕ

ϕ−ϕp

=
𝑑𝑙𝑛(ϕeff)

𝑑𝑙𝑛(ϕ−ϕp)
                                              (s4.3) 
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Figure S3. Numerical evaluations of eq.6 and eq.7 of the manuscript. The left part of the figure 

shows the evaluation of eq.6 for a particular case ϕp=0.05 and different values of 𝛼-exponent 

ranging from 0.1.to 1 and the right part illustrates the influence of the 𝛼-exponent into the 

effective numbers of particles for two specific situations: (1) close (ϕ = 0.15 ) and far (ϕ = 0.5) to 

the percolation threshold point. The insect part 𝑙𝑛𝜙𝑒𝑓𝑓  vs 𝑙𝑛(𝜙 − 𝜙𝑝)  visualizes the 

interpretation 𝛼-exponent is terms of the slope changes intrinsically related with the speediness 

of the glass transformation. 

 

S.5 Derivation of eq.8 

The eq.8 of the manuscript has been derived mainly based on the X. Ling Ji et al 

approach [6] however, here, two important improvements have been introduced: 

(1) Correction to the calculation of the Young modulus of the particles interphase 

and (2) Introduction of the percolation effect. 

S.5.1) Correction of eq.4 

As is shown in Fig.S4, we have evaluated the composite response to an applied 

stress (𝑇 = 𝐹𝑇 𝐴𝑠𝑇⁄ ) as three phases connected in series A, B, and C, where the 
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regions B and C are analysed as sub-regions connected in parallel: (1) region B 

by two sections (polymer matrix (m) + interphase (iB)) and (2) region C by three 

sections (polymer matrix (m) + interphase (iC)+ effective dispersed phase). The 

red colour part in Fig S4 defines the effective volume fraction contributing into 

the mechanical reinforcement and FT  and AsT  the total applied force and total 

cross sectional area respectively. 

By applying a gradual load to the composite, the total Yong modulus can be 

calculated as the slope of the linear stress–strain curve refers to the relationship 

between their axial normal stress and axial normal strain respectively which 

gives rises: 

                                          𝐸𝑇 =
(𝐹𝑇 𝐴𝑠𝑇⁄ )

(∆𝑙𝑇 𝑙0𝑇⁄ )
=

𝐹𝑇𝑙0𝑇

∆𝑙𝑇𝐴𝑠𝑇
                                                    (s5.1) 

being ∆𝑙𝑇  the total deformation of the composite and 𝑙0𝑇 denotes the original 

dimensions of the sample before loaded. Consequently the Young modulus of 

the regions A,B and C will be written as (see Figs5A): 

𝐸𝐴 =
𝐹𝐴𝑙0𝐴

∆𝑙𝐴𝐴𝑠𝐴
              𝐸𝐵 =

𝐹𝐵𝑙0𝐵

∆𝑙𝐵𝐴𝑠𝐵
            𝐸𝐶 =

𝐹𝐶𝑙0𝐶

∆𝑙𝐶𝐴𝑠𝐶
                                (s5.2) 
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Figure S4 Three-phase model diagram. Schematic representation of the three-phase model 

(top) and the series-parallel equivalence diagram (bottom) of the presented approach. The 

particles are visualized as the red spheres, the particle interphase as the yellow shell having inside 

polymer chains represented by green lines. The effective numbers of particles contributing to 

mechanical reinforcement is denoted by the red rectangle. 
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Figure S5 Three-phase model diagram. Schematic representation of the series-parallel 

arrangements.  
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For the case of series connected regions (A, B, C) the following relationships will 

be fulfilled (see Fig5A): 

{
∆𝑙𝑇 = ∆𝑙𝐴 + ∆𝑙𝐵 + ∆𝑙𝐶
𝐹𝑇 = 𝐹𝐴 = 𝐹𝐵 = 𝐹𝐶

𝐴𝑠𝑇 = 𝐴𝑠𝐴 = 𝐴𝑠𝐵 = 𝐴𝑠𝐶

                                                                                        (s5.3) 

Substituting eqs5.2 in eqs5.3 and basis of the geometrical description in FigS.4 

yields: 

1

𝐸𝑇
=  

1

𝑙0𝑇
(
𝑙0𝐴

𝐸𝐴
+

𝑙0𝐵

𝐸𝐵
+

𝑙0𝐶

𝐸𝐶
) =

1

𝑙0𝑇
 (

(𝑙0𝑇−𝛿)

𝐸𝑚
+

(𝛿−𝛾)

𝐸𝐵
+

𝛾

𝐸𝐶
) =  

(1−𝛿)

𝐸𝑚
+

(𝛿−𝛾)

𝐸𝐵
+

𝛾

𝐸𝐶
      (s5.4) 

 
Because of parallel connected sections, the following relationships can also be 

obtained (see Fig5B): 

                {
𝐹𝑇𝐵 =

𝐸𝐵∆𝑙𝐵𝐴𝑠𝑇

𝑙0𝐵
=

𝐸𝑚∆𝑙𝐵𝐴𝑠𝑚𝐵

𝑙0𝐵
+

𝐸𝑖𝐵∆𝑙𝐵𝐴𝑠𝑖𝐵

𝑙0𝐵

𝐹𝑇𝐶 =
𝐸𝐶∆𝑙𝐶𝐴𝑠𝑇

𝑙0𝐶
=

𝐸𝑚∆𝑙𝐶𝐴𝑠𝑚𝐶

𝑙0𝐶
+

𝐸𝑖𝐵∆𝑙𝐶𝐴𝑠𝑖𝐶

𝑙0𝐶
+

𝐸𝑑∆𝑙𝐶𝐴𝑠𝑑𝐶

𝑙0𝐶

                                      (s5.5) 

which results in: 

{
𝐸𝐵 =

1

𝐴𝑠𝑇
(𝐸𝑚𝐴𝑠𝑚𝐵 + 𝐸𝑖𝐵𝐴𝑠𝑖𝐵)

𝐸𝐶 =
1

𝐴𝑠𝑇
(𝐸𝑚𝐴𝑠𝑚𝐶 + 𝐸𝑖𝐶𝐴𝑠𝑖𝐶 + 𝐸𝑑𝐴𝑠𝑑𝐶)

                                       (s5.6) 

After expressing the cross sectional area in terms of the length regions (see Fig5B): 

{
𝐸𝐵 = (𝐸𝑚(1 − 𝜃) + 𝐸𝑖𝐵𝜃)

   𝐸𝐶 = (𝐸𝑚(1 − 𝜃) + 𝐸𝑖𝐶(𝜃 − 𝜑) + 𝐸𝑑𝜑) 
                                        (s5.7) 

Substituting eqs5.7 in eqs5.4, we obtain: 
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  𝐸𝑇 = 𝐸𝑚 [(1 − 𝛿) +
(𝛿−𝛾)

((1−𝜃)+
𝐸𝑖𝐵
𝐸𝑚

𝜃)

+
𝛾

((1−𝜃)+
𝐸𝑖𝐶
𝐸𝑚

(𝜃−𝜑)+
𝐸𝑑
𝐸𝑚

𝜑)

]

−1

                            (s5.8)     

 

were the Young modulus of the interfaces B and C are 𝐸𝑖𝐵 and 𝐸𝑖𝐶 respectively. 

  

Figure S6 Three-phase model diagram. Gradient distribution of the different blocks which 

forms the particle interfaces. Region (3) illustrates the corner effect omitted in X. Ling Ji model. 

Calculation of 𝑬𝒊𝑩 and 𝑬𝒊𝑪: 

The moduli of the interface in regions B (block2+block3) and C (block 1) are in 

quite different forms from each other (shown in Fig. S6). The tensile modulus 

 𝐸𝑖𝐶  will be that of block 1 ( 𝐸𝐵1) but the tensile modulus  𝐸𝑖𝐵 will be calculated as 

the result of the parallel arrangement between blocks 2 (𝐸𝐵3) and block3 ( 𝐸𝐵3) 

which gives rises: 

𝐸𝑖𝐵 =
1

𝜃
(𝐸𝐵2𝜑 + 𝐸𝐵3(𝜃 − 𝜑))                                                             (s5.9) 
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For the calculation of the tensile modulus of each block the following 

considerations will be taking into account: 

• The interface region C and region corresponding to block2 will be 

analysed as parallel and series arrangement of infinite numbers of volume 

units. 

• In the block1 and block 2, a linear gradient distribution of the modulus 

along the normal direction of the surface will be assumed and will take 

the form of the function with a linear gradient decreasing along the normal 

direction of the surface of dispersed phase. 

• In the block 3, a linear gradient distribution of the modulus along the 

direction of the normalize vector 𝑢⃗ = (−
√2

2
, −

√2

2
) will be assumed and will 

take the form of the function with a linear gradient decrease along 𝑢⃗⃗⃗  . 

• The modulus of the interface at the surface of dispersed rigid phase will 

be assumed as  𝐸𝑖𝐶(0) =  𝐸𝑖𝐵(0) = 𝑘 𝐸𝑚 where k>0 being  𝐸𝑚 the tensile 

modules 

Based on the above mentioned consideration: 

𝐸𝑖𝐶 =
1

𝑟
∫ 𝐸𝑖𝐶(𝑟)𝑑𝑟 = −

1

𝐸𝑖𝐶(0)− 𝐸𝑚

𝑟

0
∫ 𝐸𝑖𝐶(𝑟)𝑑𝐸𝑖𝐶

𝑟

0
                                  (s5.10) 

After integration, 

𝐸𝑖𝐶 =
1

𝐸𝑖𝐶(0)− 𝐸𝑚

𝐸𝑖𝐶(0)2− 𝐸𝑚
2

2
=  𝐸𝑚 (

𝑘+1

2
)                                             (s5.11) 
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The tensile modules of block2 can then be calculated as: 

1

𝐸𝐵2
=

1

𝑟
∫

𝑑𝑟

𝐸𝑖𝐵(𝑟)
=

1

𝐸𝑖𝐵(0)− 𝐸𝑚

𝑟

0
∫

𝑑𝐸𝑖𝐵

𝐸𝑖𝐵(𝑟)

𝑟

0
                                  (s5.12) 

After integration 

        
1

𝐸𝐵2
=

1

𝑟
∫

𝑑𝑟

𝐸𝑖𝐵(𝑟)
=

1

𝐸𝑖𝐵(0)− 𝐸𝑚

𝑟

0
(𝑙𝑛(𝐸𝑖𝐵(0)) − 𝑙𝑛( 𝐸𝑚))                                   (s5.13) 

which yields: 

  𝐸𝐵2 = −(𝐸𝑖𝐵(0) −  𝐸𝑚)𝑙𝑛 (
 𝐸𝑚

𝐸𝑖𝐵(0)
) =  𝐸𝑚 (

𝑘−1

𝑙𝑛[𝑘]
)                                                       (s5.14) 

The tensile modules of block3 can be calculated by linear gradient distribution 

along the normalize vector 𝑢⃗ = (−
√2

2
, −

√2

2
)  where x and y axes are defined at 

the corner between the interception of block1 and block 2 giving rises: 

𝐸𝐵3(𝑥, 𝑦) = 𝐸𝐵3(0,0) −
√2

2

𝑑𝐸𝐵3

𝑑𝑥
(𝑥 − 𝑥0)

√2

2

𝑑𝐸𝐵3

𝑑𝑦
(𝑦 − 𝑥0)                                    (s5.15) 

After substitution of the directional derivatives: 

𝐸𝐵3(𝑥, 𝑦) = 𝑘𝐸𝑚 −
√2

2
𝐸𝑚(1 − 𝑘) (

𝑥

𝑟
+

𝑦

𝑟
)                                    (s5.16) 

At the point  (
1

2
,
1

2
): 

𝐸𝐵3 = 𝐸𝐵3 (
1

2
,
1

2
) = 𝐸𝑚 (𝑘 +

√2

2
(𝑘 − 1))                                    (s5.17) 

Substituting eqs5.17 and eqs5.14 in eqs5.9  
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𝐸𝑖𝐵 =
𝐸𝑚

𝛿
((

𝑘−1

𝑙𝑛[𝑘]
)𝜑 + ((𝑘 +

√2

2
(𝑘 − 1)) (𝜃 − 𝜑)))                                     (s5.18) 

Substituting eqs5.18 and eqs5.11 in eqs5.8 and considering particles random 

orientations we get the eq.8a of the paper:                                                            

    𝐸𝑐 = 𝐸𝑚 [(1 − 𝛿) +
𝛿−𝛾

(1−𝛿)+(
𝑘−1

𝑙𝑛[𝑘]
)𝛾+((𝑘+

√2

2
(𝑘−1))(𝛿−𝛾))

+
𝛾

(1−𝛿)+
(𝛿−𝛾)(𝑘+1)

2
+𝛾

𝐸𝑓

𝐸𝑚

]

−1

                     (s5.19) 

Here it is important to remark that eq s5.19 has a corrective term, which corrects 

eq.4 of the paper. 

Because the dispersed phase is in spherical form and hence random orientations 

can be considered deriving the following relationship: 

              {

𝛾2 = 𝜙𝑒𝑓𝑓

𝛿 = √(1 +
𝑟

𝑅
)𝜙𝑒𝑓𝑓

                                                                                 (s5.20) 

Substituting eqs5.20 in eq.5.19 and considering the definition of effective fraction 

of particles (eqs2.3), we get the eq.8 of the paper: 

 𝐸𝑐 = 𝐸𝑚 [(1 − 𝛿) +
𝛿−𝛾

(1−𝛿)+(
𝑘−1

𝑙𝑛[𝑘]
)𝛾+((𝑘+

√2

2
(𝑘−1))(𝛿−𝛾))

+
𝛾

(1−𝛿)+
(𝛿−𝛾)(𝑘+1)

2
+𝛾

𝐸𝑓

𝐸𝑚

]

−1

  (s5.21) 

𝛿 = {

0 : 0 ≤ 𝜙 ≤ 𝜙𝑝

√(1 +
𝑟

𝑅
)𝜙𝑔 (

𝜙−𝜙𝑝

𝜙𝑔−𝜙𝑝
)
𝛼 2⁄

: 𝜙𝑝 < 𝜙 ≤ 𝜙𝑔

                      (s5.22) 
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                                     𝛾 = {

0 : 0 ≤ 𝜙 ≤ 𝜙𝑝

[√𝜙𝑔 (
𝜙−𝜙𝑝

𝜙𝑔−𝜙𝑝
)]

𝛼 2⁄

: 𝜙𝑝 < 𝜙 ≤ 𝜙𝑔

                         (s5.23) 
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