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Figure S1. The '"H NMR spectrum of Ru(L)2Cl2.
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Figure S2. The 'H NMR spectrum of Rul.
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Figure S3. The Ion trap MS spectrum of Rul.
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Figure S4. Cyclic voltammograms of 0.4 mM Rul in CH2Cl2 solution containing 0.1 M

BusNPFs, obtained after different potential scan cycles of 3 (a), 5 (b), 8 (c), 10 (d) and 13
(e) at 0.05 V/s on the ITO.
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Figure S5. Full-range XPS spectra of Rul powder (a) and poly(Rul)s film (d); highly

resolved XPS spectra of Rul powder (b, c) and poly(Rul)s film (e, f).
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Figure Sé6. (a) Cyclic voltammograms of poly(Rul)s film in CH2Cl2 solution that were
recorded upon increasing the scan rate (v) from 0.04 to 0.4V/s; the inset shows linear
dependence of the peak current on v. The dependence of the anodic (circle) and cathodic

(square) overpotentials (b) and (c) with corrections of ohmic drop on the logarithm of the

potential scan rate (log v).
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Figure S7. (a) Cyclic voltammograms of poly(Rul)s film in CH2Cl2 solution that were
recorded upon increasing the scan rate (v) from 0.04 to 0.4V/s; the inset shows linear
dependence of the peak current on v. The dependence of the anodic (circle) and cathodic

(square) overpotentials (b) and (c) with corrections of ohmic drop on the logarithm of the
potential scan rate (log v).
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Figure S8. (a) Cyclic voltammograms of poly(Rul)io film in CH2Cl2 solution that were
recorded upon increasing the scan rate (v) from 0.04 to 0.4V/s; the inset shows linear
dependence of the peak current on v. The dependence of the anodic (circle) and cathodic

(square) overpotentials (b) and (c) with corrections of ohmic drop on the logarithm of the
potential scan rate (log v).
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Figure S9. (a) Cyclic voltammograms of poly(Rul)s film in CH2Cl2 solution that were
recorded upon increasing the scan rate (v) from 0.04 to 0.4V/s; the inset shows linear
dependence of the peak current on v. The dependence of the anodic (circle) and cathodic

(square) overpotentials (b) and (c) with corrections of ohmic drop on the logarithm of the
potential scan rate (log v).
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Figure S10. Cyclic voltammograms of blank ITO and poly(Rul). (n =3, 5, 8, 10, 13) films
in 0.1 M HCl and 1 mM [Fe(CN)s]>/* solution recorded at a potential scan rate of 0.1 V/s.
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Figure S11. Cyclic voltammograms of poly(Rul)s film in 0.1 M TBAPFs CH2Cl2 solution
recorded by 50 repeated potential scan cycles at 0.1 V/s.
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Figure S12. (a) Changes in H202 concentrations, (b) Faradaic efficiencies over 0.5 h, and (c)
TON for poly(Rul). (n =3, 5, 8, 10, 13) photocathodes vs. n when photocathodes in O:-
equilibrated at pH 7.0 in 0.1 M Na250s aqueous solution were irradiated with 60 mWcm-2
white light and biased at -0.4 V vs SCE.



20
(@) o3 (b)
(]
= [
— s
§ o2l g 15 \
3 o
g = 0——o0
: (0]
o 0.1 g
= o 3 10
= \ g
o— . )
0.04 o
04 0.3 -0.2 -0.1 0.4 03 0.2 -0.1
Potential vs. SCE/V Potential vs. SCE/V

Figure $13. (a) Production of H202, and (b) Faradaic efficiencies over 0.5 h for poly(Rul)s
film irradiated with 60 mWcm2 white light and biased at applied potentials from -0.4 to -
0.1 V vs SCE in Oz-equilibrated at pH 7.0 in 0.1 M Na2504 aqueous solution.



Table S1. The I and ks values for poly(Rul). films

Poly(Rul):  va(V/s)  va(V/s) o ks () I' (mol/cm?)  Corrected ks (s?)
n=3 0.06960  0.08156  0.4605 1.4626 1.1351x10° 1.5029
n=>5 0.07050 0.07631 0.4802 1.4270 1.4163x10~° 1.4325
n==8 0.07343  0.07264  0.5027 1.4221 1.6006x10° 1.4235

n=10 0.06990  0.07096  0.4962 1.3712 1.8873x10° 1.0558
n=13 0.05040  0.05211  0.4917 0.9978 1.3845x10° 0.8698




Table S2. Parameters obtained by fitting the data shown in Figure 3d according to the

equivalent electrical circuit of the inset of Figure 3d

Poly(Rul). Rs/Q cm? Ca/pF St n Ret/Q) cm?
n=3 138.2 362.6 0.6553 229.2
n=>5 117.4 176.7 0.7501 400.2
n=8 141.5 147.7 0.7277 848.7

n=10 198.9 54.8 0.7646 1158
n=13 176.5 115.9 0.8250 2015




Table S3. The comparisons of photocurrent density (J) and the IPCE values of Ru
complex-based films on ITO

Film-forming

Films J (mA cm?) IPCE(%) Ref.
technique

(polyRul)s EP 2 11.4° 0.127 This work
(polyRu2)s EP 9.22° 0.605 S1
(polyRu3)1 EP 10.7¢ / 52
(polyRu4): EP 1.36¢ / S3
(Ru5/PB)s LB 4.50¢ / S4
(GO/Rub)1 ESA 2 2.68¢ -0.038 S5
(GO/Ru7)1 ESA 1.43¢ 0.04 S6

a EP: electropolymerization, ESA: electrostatic self-assembly
-0.4 V vs. SCE containing quinhydrone in 0.1 M BusNPFs
¢0V vs.SCE

4-0.5V vs. SCE
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Table S4. Selected PEC ORR for H20: parameters for organic film modified electrodes

Films H>0:2 Productivity TON FEmax Eonset/V Experiment condition Ref.
Poly(Ru5)s 2.63 mol/cm?2 (10 h) 1933 34% PEC 0.54 pH=7 Naz504 aqueous solution vs. SCE This work
Poly(Ru5)s 1.18 mol/cm?2 (10 h) 871 31% PC 0.52 pH=7 Na2504 aqueous solution vs. SCE This work
pTTh 2.18 mol/cm? (10 h) 1606 41% PEC / pH=7 Naz504 aqueous solution vs. SCE This work
pTAPP 0.058 mol/cm? 56+1 50% PEC 0.74 pH=3 acetate buffer S7
pCoTAPP 0.37 mol/cm? 17.5+4 70% PEC 0.92 pH=3 acetate buffer 57
PN/Au/PTCDI 124~97 mol/cm? (6 h) / 86% PEC 0.61 pH=2 Na250: aqueous solution vs. Ag/AgCl S8
PN/Au/EPI 133~99 mol/cm? (6 h) / 86% PEC 0.68 pH=2 Naz504 aqueous solution vs. Ag/AgCl S8

pITh ~110 mmol L* (11 h, 9 cm?)  / 90% PEC 1.15 pH=12.9 KOH aqueous solution 0.65Vvs. RHE = S9
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