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Figure S1. The 1H NMR spectrum of Ru(L)2Cl2. 
 
  



 

 
Figure S2. The 1H NMR spectrum of Ru1. 
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Figure S3. The Ion trap MS spectrum of Ru1. 
 
  



 

  

  

 

 

Figure S4. Cyclic voltammograms of 0.4 mM Ru1 in CH2Cl2 solution containing 0.1 M 

Bu4NPF6, obtained after different potential scan cycles of 3 (a), 5 (b), 8 (c), 10 (d) and 13 

(e) at 0.05 V/s on the ITO. 

 
  



 

Figure S5. Full-range XPS spectra of Ru1 powder (a) and poly(Ru1)8 film (d); highly 

resolved XPS spectra of Ru1 powder (b, c) and poly(Ru1)8 film (e, f).  
 
  



 

 
 

 

 

 
Figure S6. (a) Cyclic voltammograms of poly(Ru1)5 film in CH2Cl2 solution that were 

recorded upon increasing the scan rate (ν) from 0.04 to 0.4V/s; the inset shows linear 

dependence of the peak current on ν. The dependence of the anodic (circle) and cathodic 

(square) overpotentials (b) and (c) with corrections of ohmic drop on the logarithm of the 

potential scan rate (log ν).  

 
  



 

 
 

 

 

 
Figure S7. (a) Cyclic voltammograms of poly(Ru1)8 film in CH2Cl2 solution that were 

recorded upon increasing the scan rate (ν) from 0.04 to 0.4V/s; the inset shows linear 

dependence of the peak current on ν. The dependence of the anodic (circle) and cathodic 

(square) overpotentials (b) and (c) with corrections of ohmic drop on the logarithm of the 

potential scan rate (log ν). 

 
  



 
 

  

 

 

 
Figure S8. (a) Cyclic voltammograms of poly(Ru1)10 film in CH2Cl2 solution that were 

recorded upon increasing the scan rate (ν) from 0.04 to 0.4V/s; the inset shows linear 

dependence of the peak current on ν. The dependence of the anodic (circle) and cathodic 

(square) overpotentials (b) and (c) with corrections of ohmic drop on the logarithm of the 

potential scan rate (log ν). 

 
 
  



 

  

 

 

 
Figure S9. (a) Cyclic voltammograms of poly(Ru1)13 film in CH2Cl2 solution that were 

recorded upon increasing the scan rate (ν) from 0.04 to 0.4V/s; the inset shows linear 

dependence of the peak current on ν. The dependence of the anodic (circle) and cathodic 

(square) overpotentials (b) and (c) with corrections of ohmic drop on the logarithm of the 

potential scan rate (log ν). 

 
 
  



 

 
Figure S10. Cyclic voltammograms of blank ITO and poly(Ru1)n (n = 3, 5, 8, 10, 13) films 
in 0.1 M HCl and 1 mM [Fe(CN)6]3-/4- solution recorded at a potential scan rate of 0.1 V/s.  
 
 
 
 
 
 
  



 

 
Figure S11. Cyclic voltammograms of poly(Ru1)8 film in 0.1 M TBAPF6 CH2Cl2 solution 
recorded by 50 repeated potential scan cycles at 0.1 V/s. 
 
 
 
  



 

 

 
Figure S12. (a) Changes in H2O2 concentrations, (b) Faradaic efficiencies over 0.5 h, and (c) 
TON for poly(Ru1)n (n = 3, 5, 8, 10, 13) photocathodes vs. n when photocathodes in O2-
equilibrated at pH 7.0 in 0.1 M Na2SO4 aqueous solution were irradiated with 60 mWcm-2 
white light and biased  at -0.4 V vs SCE. 
 
 
 

  



 

 

Figure S13. (a) Production of H2O2, and (b) Faradaic efficiencies over 0.5 h for poly(Ru1)8 

film irradiated with 60 mWcm-2 white light and biased at applied potentials from -0.4 to -

0.1 V vs SCE in O2-equilibrated at pH 7.0 in 0.1 M Na2SO4 aqueous solution. 

 
 
 
 
 
  



 
Table S1. The Г and ks values for poly(Ru1)n films 

Poly(Ru1)n νa (V/s) νa (V/s) 
 

α 

 

ks (s-1) Г (mol/cm2) Corrected ks (s-1) 

n = 3 0.06960 0.08156 0.4605 1.4626 1.1351×10-9 1.5029 

n = 5 0.07050 0.07631 0.4802 1.4270 1.4163×10-9 1.4325 

n = 8 0.07343 0.07264 0.5027 1.4221 1.6006×10-9 1.4235 

n = 10 0.06990 0.07096 0.4962 1.3712 1.8873×10-9 1.0558 

n = 13 0.05040 0.05211 0.4917 0.9978 1.3845×10-9 0.8698 

 
 
  



 
Table S2. Parameters obtained by fitting the data shown in Figure 3d according to the 

equivalent electrical circuit of the inset of Figure 3d 

Poly(Ru1)n RS/Ω cm2 Cdl/µF Sn-1 n Rct/Ω cm2 

n = 3 138.2 362.6 0.6553 229.2 

n = 5 117.4 176.7 0.7501 400.2 

n = 8 141.5 147.7 0.7277 848.7 

n = 10 198.9 54.8 0.7646 1158 

n = 13 176.5 115.9 0.8250 2015 

 
 
 
 
 
 
 
 
  



 
Table S3. The comparisons of photocurrent density (J) and the IPCE values of Ru 

complex-based films on ITO 
 

Films 
Film-forming 

technique 
J (mA cm-2) IPCE(%) Ref. 

(polyRu1)8 EP a 11.4b 0.127 This work 

(polyRu2)3 EP 9.22b 0.605 S1 

(polyRu3)1 EP 10.7c / S2 

(polyRu4)1 EP 1.36c / S3 

(Ru5/PB)8      LB 4.50d / S4 

(GO/Ru6)1      ESA a 2.68c -0.038 S5 

(GO/Ru7)1      ESA 1.43c 0.04 S6 

a EP: electropolymerization, ESA: electrostatic self-assembly 
b -0.4 V vs. SCE containing quinhydrone in 0.1 M Bu4NPF6 
c 0 V vs. SCE  
d -0.5 V vs. SCE  
 

 
 
 
 
 



Table S4. Selected PEC ORR for H2O2 parameters for organic film modified electrodes 

Films H2O2 Productivity  TON FEmax  Eonset/V Experiment condition Ref. 

Poly(Ru5)8        

Poly(Ru5)8 

pTTh 

pTAPP 

2.63 mol/cm2 (10 h) 

1.18 mol/cm2 (10 h) 

2.18 mol/cm2 (10 h) 

0.058mol/cm2  

1933 

871 

1606 

5.6 ± 1 

34% 

31% 

41% 

50% 

PEC 

PC 

PEC 

PEC 

0.54 

0.52 

/ 

0.74 

pH=7 Na2SO4 aqueous solution vs. SCE 

pH=7 Na2SO4 aqueous solution vs. SCE 

pH=7 Na2SO4 aqueous solution vs. SCE 

pH=3 acetate buffer 

This work 

This work 

This work 

S7 

pCoTAPP 0.37 mol/cm2  17.5 ± 4 70% PEC 0.92 pH=3 acetate buffer S7 

PN/Au/PTCDI 124~97 mol/cm2 (6 h) / 86% PEC 0.61 pH=2 Na2SO4 aqueous solution vs. Ag/AgCl S8 

PN/Au/EPI 133~99 mol/cm2 (6 h) / 86% PEC 0.68 pH=2 Na2SO4 aqueous solution vs. Ag/AgCl S8 

pTTh ~110 mmol L-1 (11 h, 9 cm2) / 90% PEC 1.15 pH=12.9 KOH aqueous solution 0.65Vvs. RHE S9 
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