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S1. Mathematical Details on the Demonstration of Equation (38) of the Main Text

We demonstrate explicitly Equation (38) of the main text. We start from Equation (37):〈
l0
〉
=

S
n(n− 1)

(S1)

where

S ≡
n

∑
i=1

n

∑
j=1
|j− i| =

n

∑
i=1

i

∑
j=1

(i− j) +
n

∑
i=1

n

∑
j=i+1

(j− i) (S2)

S =
n

∑
i=1

{
i

∑
j=1

i−
i

∑
j=1

j +
n

∑
j=i+1

j−
n

∑
j=i+1

i

}
(S3)

To evaluate S, we use the two following well-know equations
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From Equation (S4), we have
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Using Equations (S4), (S5) and (S6) in Equation (S3), we find
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Finally, we deduce Equation (38) 〈
l0
〉
=

n + 1
3

(S11)

S2. Topological Analysis of Folding/Unfolding MD Trajectory of HP-36

The main results found for Trp-cage are robust and does not depend so much on the
details of the chosen folding/unfolding trajectory. To show this, we repeated the analysis
for a MD trajectory of HP-36 which is another well-known fast folder protein. This is the
36-residue thermostable helical subdomain of the F-actin-binding headpiece domain of



chicken villin. The HP-36 is the smallest domain of a naturally occurring protein that folds
cooperatively to a compact helical native state. As for the Trp-cage, the MD trajectory is 500
ns of duration and consists of snapshots calculated on every picosecond at the temperature
380 K. The initial structure at time t = 0 in the MD trajectory is the average experimental
native structure measured by NMR (PDB ID: 1VII) after relaxation in explicit solvent. More
details of the MD trajectory are given in Ref. [1]. We found similar results to those presented
in the main text for the analysis of the Trp-cage MD trajectory. Here we summarize the
main results.

At time t = 0 by construction, ξ(0) = 1 and fluctuates below 1 at 380 K (above the
unfolding temperature) in the MD trajectory of HP-36 as shown in Figure S1. As for Trp-
cage, we divide the snapshots in a folded state ξ ≥ 0.6 and an unfolded state ξ < 0.6. The
HP-36 spent less time in the unfolded state than Trp-cage. The unfolded state of HP-36 also
is less pronounced than for Trp-cage, i.e. most of ξ values remain above 0.4.

Fluctuations of K on the picosecond and nanosecond time-scales are presented in
Figure S2. The fluctuations of K and of

〈
l0〉 as a function of time are compared in Figure

S3. They are anti-correlated with a Pearson correlation coefficient of -0.8892 similar to the
one computed for the Trp-cage trajectory. The minimum and maximum values of K are
0.0083 and 0.0984, respectively. The Equation (40) of the main text predicts a minimum
value for K of 0.0046. This means that HP-36 does not unfold completely in the trajectory.
As for Trp-cage, the time average values of K in the folded state (0.0362) is larger than in the
unfolded state (0.0300). It is worth noting that HP-36 is softer than Trp-cage as its average,
minimum and maximum values of K, are less than half those of Trp-cage. It is worth noting
that both Equations (40) and (45) show than K decreases with n.

The values of
〈
l0〉 vary between 2.7619 and 8.3127. As HP-36 does not unfold com-

pletety, the observed maximum value is lower than the one predicted by Equation (38) of
the main text which is 12.3333. As for Trp-cage, the average value of

〈
l0〉 in the folded state

(4.3577) is smaller than one in the unfolded state (4.4490). The difference between these
two values is smaller than for Trp-cage as HP-36 explores less extended states in the MD
trajectory.

As for Trp-cage, K and
〈
l0〉 are not correlated with ξ. The Pearson correlation co-

efficient between ξ and K is 0.2491 and between ξ and
〈
l0〉 -0.0567. These numbers are

lower than for Trp-cage. The Probability Density Function (PDF) of (ξ, K) computed from
the trajectory is represented in panel (a) of Figure S4 and shows two folded substates
(ξ ≈ 0.8− 0.9, ξ ≈ 0.7) and a weak unfolded state (ξ ≈ 0.5− 0.6). These states are clearly
visible in the PDF of (ξ,

〈
l0〉 [Figure S4 (b)]. The variations of K and

〈
l0〉 provide additional

information on the microstates explored in the folded and unfolded states for a given
value of ξ. As for Trp-cage, we observe several compact and rigid transient structures
with a global force constant much larger than

〈
K f olded

〉
. For the HP-36 trajectory, these

structures are found both in the unfolded and folded states. For example, at time t5 in
Figure S3, K is 0.0808 compared to

〈
K f olded

〉
= 0.0362 and

〈
l0〉 = 3.0143 compared to〈

l0
f olded

〉
= 4.3577. In the unfolded region 200 ns < t < 230 ns, one observes compact rigid

misfolded structures with K ≈ 0.06 twice larger than
〈

Kun f olded

〉
= 0.03 (Figure S2).

The PDF (K,
〈
l0〉) are shown in Figure S5 (a) and (b). As can be seen, the global force

constant varies for a given value of the average shortest path length as for Trp-cage. For
example, we show three selected structures s1, s2 and s3 (named by increasing K value)
with the same value of

〈
l0〉 = 4 in Figure S5 (c), (d) and (e), respectively. They correspond

to graphs with different robustness. In particular, the structure s1 has C-term which remains
flexible on the opposite of s2 and s3 structures. The stiffer structure s3 has a contact between
the C-term and N-term on the contrary to the two others.

As for Trp-cage, the ensemble of points in the (K,
〈
l0〉) plot draws nearly continuous

lower and upper limits. The upper limit is nicely predicted by Equation (44) of the main
text as in Figure 5 for Trp-cage. The explanation of this surprising result is identical for



HP-36 and Trp-cage. For each value of
〈
l0〉 of HP-36 PG (with n = 36 amino acids),

there is a completely unfolded shorter protein chain with n < 36 amino acids which
has a similar value of

〈
l0〉. This shorter chain can be approximated by a complete chain

(n = 36) with contacts only between second, third, etc nearest-neighbors (in addition to
the peptide bonds which are always present). As for Trp-cage, we built series of models of
completely unfolded chains (36, j) with contacts only between second (j = 2), third (j = 3),
fourth (j = 4), fifth (j = 5)... nearest-neighbors represented by the black dots in Figure S5
numbered, 2, 3, 4, 5..., respectively. These points follow the predictions of Equation (44)
perfectly confirming again the reasoning.

We examined the sequence of the local force constants ki. To illustrate how these
sequences vary in the folding/unfolding events, we selected four representative snapshots
in the MD trajectory at t1 = 100 ns (ξ = 0.8167, K = 0.0678), t2 = 220.5 ns (ξ = 0.55, K =
0.0344), t3 = 350 ns (ξ = 0.5167, K = 0.1373) and t4 = 425 ns (ξ = 0.917, K = 0.0329)
indicated at Figure S3. The snapshots at different times are shown in Figure S5 (f) to (k).
We selected also a folded structure at t5 = 13 ns (ξ = 0.85) corresponding to a snapshot
with high rigidity, i.e. K = 0.081. The structure at t0 corresponds to (ξ = 1, K = 0.0315).
The sequences of ki of the folded structures at times t0 and t4 are nearly identical. The rigid
structures at t1 and t5 have similar sequences of ki but which are very different from the
one of the native structure at t0 even if the nativness at t1 and t5 is large and not so different
from the one at t4. This clearly indicates that the sequence of local force constants as well
as the global force constant of proteins are better descriptors of their nativeness as they
allow to detect misfolded states with a large fraction of native contacts. As it can be seen in
Figure S5 (d) and (k), the misfolded states correspond to transient structures with contacts
between their N-term and C-term. The configurations in the unfolded state at t2 and t3

have different sequences of ki. The global force constant at t2 is closer to
〈

K f olded

〉
than〈

Kun f olded

〉
with ki in the N-term and C-term larger than those of the native structure at t0

. At t2 the protein is in fact misfolded as it can be seen in Figure S5 (e). The structure at
t3 is soft as expected for an unfolded protein and indeed the molecule is in an extended
conformation as shown in Figure S5 (i).

We compared the entropic contribution (i.e. for ε = 0) of the local [Equation (56) of the
main text], nonlocal [Equation (57) of the main text], global [Equation (58) of the main text]
and collective [Equation (59) of the main text] models of the graph free-energy in Figure
S7 (a). As for Trp-cage, the local, nonlocal, global and collective models agree remarkably
to each other with only a change of scale. The global model has the smallest scale and is
very similar to other models (for example, the Pearson correlation coefficient with the local
model is 0.97 as for Trp-cage). As for Trp-cage, in all models the entropy change is positive
in the folded parts of the MD trajectory as expected since the folding reduces possible
structural fluctuations. For the HP-36, the collective free-energy obeys less strictly to this
rule and is negative between 130 and 180 ns although its variation is highly correlated with
the nonlocal free-energy. Short excursions of all free-energy models to negative values in
the shaded red area, as just before the first unfolded region 200 ns < t < 230 ns, correspond
in fact to repeated short times unfolded states represented by thin white lines hardly visible
on the plot. In unfolded parts of the trajectory, the entropy change is mostly negative, as
expected, as shown in the region 300 ns < t < 380 ns. As for Trp-cage, there are exceptions
with positive entropy in the unfolded region pointing to compact misfolded structures with
large K. This occurs for example in the unfolded region 200 ns < t < 230 ns for the local,
nonlocal and global free-energies. The protein is misfolded which explains the positive
entropy contribution.

In Figure S7 (b), we represent enthalpic term for different values of ε. This term is
positive and large in the unfolded parts of the trajectory as expected since the unfolded
structures have vertices with a lower degree. The enthalpic term is small in the folded
parts which indicates that folded structures are in average as connected as the reference
structure at t0 with a few exceptions as at t5 because the structure is misfolded and rigid



with a large number of contacts. The enthalpic term is only roughly anti-correlated with
the entropic term (the Pearson correlation coefficient between the two terms for the local
model is -0.45). The examination of enthalpic and entropic parts of the free-energy models
permits the characterization of the different rigid misfolded structures. The addition of the
two terms is represented for a value of ε = −5 at Figure S7 (c). With this value of ε, the
structures in time ranges where the protein is unfolded (white regions in Figure S1) have
large positive free-energies. But with this value of ε some folded regions according to the
criterion ξ > 0.6 have also positive free-energies as between 130 ns and 200 ns, a region
preceding the first unfolding region of the MD trajectory. We observe a drift of ξ to lower
values in this time region indicating the non-stationarity of the folded state in this time
interval.

S3. Supplementary Figures for HP-36 (PDB ID: 1VII)

Figure S1. MD trajectory of HP-36 at 380K. Time t in red (∀t) : ξ(t) > 0.6. The yellow curve is
computed for a moving mean with a window size of 1 ns.

Figure S2. Evolution of the global force constant K for the MD trajectory shown in Figure S1. The
bold green curve is computed for a moving mean with a window size of 1 ns.

Figure S3. Comparison between the average shortest path length (blue) and global force constant
(green) for the MD trajectory shown in Figure S1. The bold green curve is computed for a moving
mean with a window size of 1 ns. Times t0, t1, t2, t3, t4, t5 discussed in the text are indicated.



(a) (b)

Figure S4. Panels (a) and (b) represent respectively the PDF of (ξ, K) values and (ξ,
〈
l0〉) computed

from the trajectory shown in Figure S1.



(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure S5. Relationship between K and l computed for the MD trajectory in Figure S1. Panel (a) PDF
of (K,

〈
l0〉) (blue dots) and pairs of values (K,

〈
l0〉) for three selected snapshots named s1 (green dot),

s2 (pink dot), and s3 (red dot) with the same value of
〈
l0〉 as discussed in the text. Red line is the

result of application of Equation (44) of the main text. Black dots are the results of model chains with
regular long distance spring force constants of different lengths named (36, j = 1, 2, 3...) in the text.
Panel (b) PDF of (K,

〈
l0〉) from all snapshots with ξ > 0.6 (blue). Red line and black dots are as in

Panel (a). The orange dot is the (K,
〈
l0〉) value of the experimental NMR average structure (PDB ID:

1VII). Colors dots correspond to the values computed for the snapshots at times t0 to t5 indicated
at Figure S3. Panels (c),(d),(e),(f),(g),(h),(i),(j) and (k) are three-dimensional representations of the
structures s1, s2, s3 in Panel (a) and of the structures at times t0, t1, t2, t3, t4, t5, respectively. The
spheres are the positions of the Cα atoms and the tube represents the backbone. The black lines are
the contacts considered to build the PG.



Figure S6. Distribution of the local force constants at times t0 (bold green), t1 (ligth blue), t2 (red), t3

(brown), t4 (dark blue) and t5 (orange) indicated in Figure S3 and discussed in the text. The grey area
limited by dashed lines represents the range of values observed in the MD trajectory.

(a)

(b)

(c)

Figure S7. Free-energy graph calculations for the trajectory of Figure S1. (a) Local (blue), nonlocal
(green), global (red), and collective (black) free-energy with ε = 0. Horizontal dashed lines indicate
the zero baselines of the free-energies with the corresponding colors. (b) Enthalpy term of the free-
energy graph with ε = −1 (blue), ε = −3 (green), ε = −5 (dark red). Horizontal dashed line indicates
the zero baseline. d(t) ≡ ∑i di(t) and d(0) ≡ ∑i di(0). (c) Local free-energy with ε = 0 (blue) and
ε = −5 (green). Folded regions are indicated by red vertical lines as in Figure S1. Horizontal dashed
lines indicate the zero baselines of the free-energies with the corresponding colors.

S4. Generalized Randić Theorem and Relation with Compliance

Here we demonstrate that the Randić resistance[2] between two nodes of an elastic
network, i.e. the inverse of the nonlocal force constant, can be interpreted as the linear
response of the nodes to a couple of opposite unit forces as stated in the main text. This
implies that the Randić resistance is identical to the mechanical compliance of a pair of
nodes.



First, the Randić theorem for electrical network can be generalized by considering the
following linear response equation

n

∑
k=1

Likak = bi (S12)

where Lik is a symmetrical matrix obeying the following sum rule

n

∑
k=1

Lik = 0 ∀ i

n

∑
i=1

Lik = 0 ∀ k (S13)

and represents the linear response of a network where each node is a vertex of a graph
representing or not an actual physical system. The ak and bi are components of vectors
representing the responses of nodes and their excitations, respectively. Because of Equation
(S13), the matrix L is singular. The Moore-Penrose generalized inverse is

L−1
ik =

n

∑
l=2

1
λl

el(i)el(k) (S14)

where λl are the eigenvalues of L sorted by increasing values. The el(i) are the components
of the lth eigenvector of L. Because of Equation (S13), we have λ1 = 0 and e1(i) = C where
C is a constant. Because of the completness of the basis set of L, we deduce

n

∑
k=1

L−1
ik Lkm = δim − C2 (S15)

Multiplying Equation (S12) by L−1 and using Equation (S15) for two different nodes,
we find

am − C2
n

∑
k=1

ak =
n

∑
i=1

L−1
mi bi

am′ − C2
n

∑
k=1

ak =
n

∑
i=1

L−1
m′ibi (S16)

Substraction of the two lines of Equation (S16) leads to a generalized Randić theorem

am − am′ =
n

∑
i=1

[
L−1

mi − L−1
m′i

]
bi (S17)

Equation (S17) is a general equation where we examine the response of two nodes of a
network to a set of excitations represented by the vector

−→
b of length n. For a particular

excitation defined as follows:

bi ≡ b(δmi − δm′i) for i = 1, 2...n (S18)

Equation (S17) is reduced to the Randić theorem[2]:

am − a′m = Ωmm′b

Ωmm′ = L−1
mm + L−1

m′m′ − 2L−1
mm′ (S19)



where Ωmm′ is the original Randić resistance[2] if −→a is the current and
−→
b is the voltage.

If L represents the Laplacian of a connected, undirected and simple graph, the Randić
resistance can be related to the nonlocal force constant of an atom pair of a linear elastic
chain by Ωmm′ = 1/Kmm′ as stated in the main text (see Equations (31) and (32) in the main
text).

The resistance Ωmm′ also is exactly the compliance Cmm′ [3] of an atom pair (m, m′) of
an elastic linear chain. Indeed, from Equation (9) in the main text, we have:

am − a′m = Ωmm′b

Ωmm′ =
(

φ−1
mm + φ−1

m′m′ − 2φ−1
mm′

)
= Cmm′ (S20)

where φ is the Hessian of the linear chain, am and a′m are the atomic displacements of the
atoms m and m′ and b is the amplitude of the couple of forces applied to this pair of sites.

It is worth noting that the relation with the compliance computed numerically for
a three-dimensional elastic network representing the protein (see Ref. [3]) is in fact a
tensorial problem. The Hessian and the response matrix L are 3nx3n matrix and −→a and
−→
b are vectors of length 3n. Therefore the compliance (Randić resistance or its inverse, the

nonlocal force constant) is in fact a 3x3 tensor for a couple of forces:

aα
m − aα

m′ = ∑
β

Ωαβ
mm′b

β

Ωαβ
mm′ =

(
φ
−1,αβ
mm + φ

−1,αβ
m′m′ − 2φ

−1,αβ
mm′

)
(S21)

with α, β = x, y or z.
The exact relation between the Randić resistance and the scalar compliance Cmm′ of an

atom of a three-dimensional elastic network[3] is as follows. The authors defined a scalar
compliance by applying a couple of forces along the direction of the vector joining two atoms in
a protein, i.e. in the direction −→r m −−→r m′ where −→r m and −→r m′ are the positions of atoms m
and m′ in the structure when no forces are applied. In this case, we have bβ = b

(
rβ

m − rβ
m′

)
with b the amplitude of the couple of forces. if −→a m and −→a m′ are the atomic displacements
induced by this couple of forces, Equation (S21) reads

aα
m − aα

m′ = ∑
β

Ωαβ
mm′b

(
rβ

m − rβ
m′

)
From Equation (12) of Ref. [3] defining Cmm′ in this case, we find the exact relation

between this quantity and the Randić resistance tensor (or its inverse, the nonlocal force
constant tensor)

Cmm′ ≡∑
α

(aα
m − aα

m′)(r
α
m − rα

m′) (S22)

Cmm′ = ∑
α

∑
β

(rα
m − rα

m′)Ω
αβ
mm′

(
rβ

m − rβ
m′

)
(S23)
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